

Using ADO
from

Delphi

Fundamentals of Database Development (with Delphi) .. 6

Data Access with Delphi...just a few words ... 6
Don't runaway ... 6
New...Database ... 7

Filling some data... 8
Connecting to a database. BDE? ADO? ... 8

ADO Objects... 10
Link between components .. 11

Pictures inside a database .. 13
Storing pictures in Access... 14
The DBImage - take one ... 15
Pulling the Jpeg - take two! .. 16
OLE object type format - take three! .. 17
The correct way - take four!.. 18

Data browsing and navigation ... 20
Working together... ... 21

Data Controls .. 21
Data Source... 21
Datasets ... 21
ADO Connection .. 22

Defining the User Interface... 22
Fields... 23
It's alive ... 24
First, Move by, Last,... .. 24

Behind data in datasets... 25
Pick, set, connect and get.. 25
Open Sesame ; Close Sesame ... 25
How are you doing? .. 26
Moving on from BOF to EOF... 27
Bookmarking... 27
The value of data... 28

Data modifications .. 29
Posting... 30
Editing a record... 31
Adding a new record... 31
"Undo" changes .. 32
Deleting a record... 32

Queries with ADO... 32
SQL with TADOQuery... 33
Doing a SQL query ... 33
Dynamic queries ... 34
Navigating and editing the query.. 35
An example ... 35

Data filtering.. 36
Filtering... 36

Filtered, FilterOptions, FilterGroup, OnFilterRecord... 37
To filter or not to filter .. 38

Searching for data... 38
Locate.. 39
Lookup .. 39

Indexing .. 40
Seek... 40

ADO Cursors... 41
Cursor?!... 42
CursorType ... 42

CtDynamic .. 43
CtKeyset.. 43
CtStatic.. 43
ctForward-only.. 43

CursorLocation ... 43
LockType .. 44

LtOptimistic .. 44
LtPessimistic ... 45
LtReadOnly... 45
LtBatchOptimistic... 45

From Paradox to Access with ADO and Delphi... 45
Data definition language ... 45

TFieldDef.DataType ... 46
ADOX... 46
TADOCommand... 47

GUI ... 48
Code .. 48

Master detail relationships... 50
MS Access relationships ... 51

Customers-Orders relation .. 51
Setting up Master/Detail with ADOExpress... 52

MasterSource and MasterFields.. 53
ADO Shaping.. 54

New...Access Database from Delphi .. 54
ADOX... 55

aboutdelphi.mdb.. 55
The Delphi Project .. 56

New...Database ... 56
Add table, create index, set referential integrity ... 57

Charting with Databases .. 59
TeeChart.. 59

Let's chart! – Prepare .. 59
Let's chart! – Connect ... 61
Chart tab.. 61

Series tab... 62
Let's chart! – Code .. 63
Minor adjustments and notes .. 63

Charting with Databases .. 64
TeeChart.. 64
Let's chart! – Prepare .. 65
Let's chart! – Connect ... 66
Chart tab.. 67
Series tab... 67
Let's chart! – Code .. 68
Minor adjustments and notes .. 69

Lookup!.. 70
Creating a data entry form .. 71

New ... lookup field.. 72
Lookup with DBLookupComboBox... 73
Lookup inside a PickList of a DBGrid Column.. 75

Compacting an Access database with ADO and Delphi.. 77
Why compacting ... 77
JRO TLB... 77
Compact Delphi Project.. 78

Database reports with Delphi and ADO ... 80
Report Types... 80
Quick ADO Delphi report... 81
Charts and Images... 83

Data Modules... 83
Sharing data access components and code.. 83
Design time visual organization.. 84
Code maintenance... 84

New ... Data Module.. 84
Handling database errors... 85

EDatabaseError, EADOError, OLE exceptions.. 86
Error information and management .. 86
Error logging procedure.. 88
ADO Errors collection .. 88

From ADO Query to HTML.. 89
HTML code... 90
The TCustomContentProducer components ... 93

Using ADO in Delphi 3 and 4 (before AdoExpress) .. 93
MSADOxx.TLB - Ado Type Library ... 93
Microsoft's VARIANT type.. 94

Transactions in Delphi ADO database development... 96
BeginTrans, CommitTrans, RollBackTrans ... 97
Transaction Level.. 97
Transaction processing.. 97

Deploying Delphi ADO database applications ... 98
ADO on Windows 95.. 98

MS Data Version Checker .. 99
The database file ... 99
The connection string.. 99
Is that all? This seams to easy... 100

TOP ADO programming TIPS.. 100
Access, ADOExpress, dbGo... 100

My clients do not have Access on their machines, will my Delphi / ADO application
work?... 100
I have Delphi 5 Professional, where is ADOExpress? ... 100

Connecting to data stores .. 101
How do I connect to a MS Access 2000 database? .. 101
How do I connect to a password protected MS Access 2000 database? 101
What provider should I use for MS Access .. 101
How do I connect to a dBase database?.. 101
How do I connect to a Paradox database? .. 101
How do I connect to a MS Access database on a CD (read only) drive? 101

Data retrieving and manipulation.. 101
How do I use multiword table / field names (spaces in Table or Field name)?...... 101
How do I use constant fields in an SQL query?.. 101
How do I delete all records in a table?.. 102
Why do I keep getting a "-1" for the RecordCount property 102
How do I create a disconnected ADO recordset? I want to run a query, pick the data
and delete some records but not physically. ... 102
How do I retrieve a system information, for example, list of tables, fields (columns),
indexes from the database? ... 102
How can I improve the performance of my Ado application (like speed up query
data retrieval)? .. 102

Fundamentals of Database
Development (with Delphi)

Many Delphi beginners start with projects like "My Notepad" when beginning
programming with Delphi, other developers spend nights and days in writing various
multimedia and graphics applications, but all of them will sunner or later realize that
90% of today's software interacts with some data stored in some way.

There's no doubt about it, Delphi has powerful and reliable data-management
capabilities. Application developers building the next generation of business software
are attracted to Delphi for several reasons. With Delphi we can create software that
operates with just about all types of desktop databases like Paradox, dBase or MS
Access. We can also use Delphi to build solutions for client-server development.

Data Access with Delphi...just a few words

Delphi ships with more than 40 prebuilt database components and provides a visual
programming environment that includes an integrated code editor, Database Form
wizard that speeds up steps to create a browsable data form and Data Module
Designer that can be used to share data access among multiple forms. Several other
database specialized tools are also provided with Delphi to help us code faster and
easier.

The Data Access page of the Components Palette provides components used to
connect to a data source. In the Data Controls page, data aware components are
ones that (after Delphi connects to a database) can be use to retreive and send data
to or from a database. The components on the ADO page use ActiveX Data Objects
(ADO) to access the database information through OLEDB. The components on the
InterBase page access an InterBase database directly.

Don't runaway

Database programming, of course, is not trivial. In this course we will try to bring
closer some of the techniques, problems and solutions to database programming
with Delphi along with all the secrets it hides from us. Before we move on to using
various data components/tools in Delphi we should first see some of the concepts of
database design and try to build a simple database.

Before we start interacting with databases using Delphi, it is a good idea to get a feel
what modern databases are about. When you think of a word database you should
generally think of any type of data stored inside a computer - even a SomeFile.pas
file (code to some Delphi unit) is some kind of database. Another type of database is
a Word document or a simple .ini file. To access an .ini file we generally use routines
and techniques for typed or untyped files.

Building a modern database application requires us to think of data in a relational
way. The basic idea behind the relational model is that a database consists of a
series of tables (or relations) that can be manipulated using operations that return
tables or so-called views. Simply put, a database is best described as a collection of
related data. A database may include many different tables. Tables are like grids
where columns are called fields and rows are called ... rows.

To fully address the concepts of database design and relational model we would need
an extra online course. For a great overview check out the Fundamentals of
Relational Database Design.

New...Database

Since this course will primarily focus on ADO/Access Delphi approach to database
programming we will now see how to create a new .mdb database in MS Access.
If you have never built a database with MS Access, go see MS Access tutorials for a
great info.

I hope you know that on this site there is a Members Area where Delphi developers
can upload their free code applications and components. Each member has it's name,
an email address and a possibly a web page. If we would like to keep track of every
application posted to this community we could assemble a database of three tables:
Applications (general information about an application), Authors (who made the
application) and Types (what kind of app is it). Let's see how to do just that:

Start Access and create a blank database named aboutdelphi.mdb. Create three
tables in Design view: Applications, Authors and Types.
Let's see the structure of those tables:

The Applications table contains fields that match the application description
requirements: Name, Description, Author, Type, Size, Cost, DateUpl and Picture.
Name, Description, Author and Type fields contain Text data, 50 characters by
default. The Size filed is of a Number (Single) type - used to store the size of a file in
Kb. The Cost field is a Currency field - if the app is shareware or commercial. The
DateUpl field is a date/time value. The Picture is of a OLE Object type and will hold
an (optional) picture for an application. Let the filed Name be the primary key.

The Authors table contains fields that match the application author requirements:
AuthorName, Email and Web. All the fields contain character data (50 chars by
default). Let the filed AuthorName be the primary key.

The Types table contains only one field: TypeName which is the primary key for this
table. This table will be used to store the type of application (graphical, multimedia,
database, ...)

We now only have to set up a relation in the relationships window and the database
is ready.

Both relations should "Enforce Referential Integrity" with only "Cascade Update
Related Records" check on.

Filling some data

In order to have some "dummy" data in a database fill in the Types table with the
following 4 records: 'Game','Database','Internet','Graphics'. This values will be used
when choosing the type of the application stored in the Applications table. Next, add
one row to the Authors table: 'Delphi Guide', 'delphi.guide@about.com',
'http://delphi.about.com'. Finally let the only one row in the Applications table look
like: 'Zoom', 'Zooming the Destop', 'Delphi Guide', 'Graphics', 10, 0, 02/20/2001. For
the moment leave the last field (Picture) empty.

Connecting to a database. BDE?
ADO?
As shown in the previous chapter of this course, a database is a collection of one or
more tables that store data in a structured format. These tables, contain data that is
represented by rows and fields. When a database consists of two or more tables,
these tables generally contain separate yet related data. MS Access, Interbase or
SQL Server use a single file (Access, the *.mdb file) that represents the entire
database. On the other hand, Paradox and dBase databases are defined with
separate tables and files that represent indexes and table relations. All the files

needed to describe a Paradox database are usually stored in a single directory.
Delphi, of course, has means of working with both approaches.

With Delphi, we can connect to different types of databases: local or client/server
(remote server) database. Local databases are stored on your local drive or on a
local area network. Remote database servers usually reside on a remote machine.
Types of local databases are Paradox, dBase and MS Access. Types of client/server
databases are MS SQL Server, Interbase or Oracle. Local databases are often called
single-tiered databases. A single-tiered database is a database in which any changes,
such as editing the data, inserting records, or deleting records - happen immediately.
Single-tiered databases are limited in how much data the tables can hold and the
number of users your application can support. When the database information
includes complicated relationships between several tables, or when the number of
clients grows, you may want to use a two-tiered or multi-tiered application. Client
applications run on local machines; the application server is typically on a server,
and the database itself might be on another server. The idea behind the multi-tier
architecture is that client applications can be very small because the application
servers do most of the work. This enables you to write what are called thin-client
applications.

When we write a database application in Delphi, we need to use some database
engine to access a data in a database. The database engine permits you to
concentrate on what data you want to access, instead of how to access it. From the
first version, Delphi provides database developers with the BDE (Borland Database
Engine). Beside the BDE, Delphi from the fifth version supports Microsoft ADO
database interface.

This course will primarily focus on MS Access local database producing the single-
tiered application.

The BDE is a common data access layer for all of Borland's products, including Delphi
and C++Builder. The BDE consists of a collection of DLLs and utilities. The beauty of
the BDE is the fact that all of the data manipulation is considered "transparent" to
the developer. BDE comes with a set of drivers that enables your application to talk
to several different types of databases. These drivers translate high-level database
commands (such as open or post) and tasks (record locking or SQL construction)
into commands specific to a particular database type: Paradox, dBASE, MS Access or
any ODBC data source. The BDE API (Application Programming Interface) consists of
more than 200 procedures and functions, which are available through the BDE unit.
Fortunately, you almost never need to call any of these routines directly. Instead,
you use the BDE through the VCL's data access components, which are found on the
Data Access page of Component Palette. To access the particular database the
application only needs to know the Alias for the database and it will have access to
all data in that database. The alias is set up in the BDE Administrator and specifies
driver parameters and database locations. The BDE ships with a collection of
database drivers, allowing access to a wide variety of data sources. The standard
(native) BDE drivers include Paradox, dBase, MS Access, ASCII text. Of course, any
ODBC driver can also be used by the BDE through the ODBC Administrator.

Delphi applications that use the BDE to access databases require that you distribute
the BDE with the application. When deploying the BDE with an application, you must
use InstallShield Express or another Borland certified installation program.

The BDE has several advantages as well as disadvantages as a database engine. It's
not my intention to discuss about why and when you should (or not) use the BDE
approach over some non-BDE technique.

Since this course is about ADO/MSAccess the rest of the course will focus on this
non-BDE database approach.

As stated in the Introducing ADO in Delphi article, ADO is a set of COM components
(DLLs) that allow you to access databases as well as e-mail and file systems.
Applications built with ADO components don't require the BDE.

To access any kind of database with ADO, you'll of course need to have ADO/OLE DB
libraries. Everything you need to use ADO is probably already on your computer: the
files are distributed by Microsoft as a part of Windows 98/2000. If you or your client
use Windows 95 or Windows NT you will probably need to distribute and install the
ADO engine. Delphi 5's CD includes an installation of MDAC - Microsoft Data Access
Components. You should always make sure to have the latest version, which is
available from Microsoft. The Microsoft Data Access Components are the key
technologies that enable Universal Data Access. They include ActiveX Data Objects
(ADO), OLE DB, and Open Database Connectivity (ODBC). Note: to install correctly
on a Windows 95 computer, MDAC requires that DCOM95 be installed. MDAC installs
components that rely on DLLs installed by DCOM95 in order to register correctly.
Note that DCOM95 is not required on a Windows NT 4.0. In some cases, DCOM may
not be installed on a Windows 98 computer. If it has not been installed, then
DCOM98 should be installed prior to the installation of MDAC.

Without to much talking about OLE DB and ADO let's move on to more practical
topics.

ADO Objects

The ADO programming model is built around several ADO objects that provide you
with the productive means for accessing all kinds of data sources. These objects
provide the functionality to connect to data sources, query and update record sets,
and report errors. Delphi, through several VCL components provides wrapper
components to access those objects. Let's see what are some of the Objects ADO
works with:

The Connection object represents a connection to the data source with the
connection strings. In BDE/Delphi a Connection object is a combination of the
Database and Session components.

The Command object enables us to operate on a data source. Ir represents a
command (also known as a query or statement) that can be processed to add,
delete, query or update the data in a database.

The Recordset object is a result of a Query command. You can think of a Recordset
as a Delphi Table or Query component. Each row that the Recordset returns consists
of multiple Field objects.

Several other objects like: the Field object, the Parameter Object and the Error
object also exist in ADO model - will get back to them in the following chapters of
this course.

Before going on to the brief explanation of each component in AdoExpress collection,
let's first see how to connect to an Access database. Of course, we will be connecting
to our AboutDelphi.mdb sample database.

Delphi (5) ADO support is concentrated in the ADOExpress components on the ADO
tab of the component palette. Several other database enabled components will be
used through this course. For the moment we will focus on the minimal set of
components needed to access an Access database with ADO.

Start Delphi, this will open a new application with one blank form.

In order to be able to access data in an Access database with ADO and Delphi, you
must add at least three data aware components to our project. First, the DBGrid on
the DataControls component page - used to browse through the records retrieved
from a table or by a query. Second, the DataSource (DataAccess Page) used to
provide a link between a dataset and DBGrid component on a form that enable
display, navigation, and editing of the data underlying the dataset. And finally the
ADOTable (ADO page) that represents a table retrieved from an ADO data store.
Drop all of them on a form. Let the names be the default one. The form should look
something like:

If you run the application now, nothing is displayed in a Grid - of course, we did
nothing to really connect to a database. Note just one more thing: only the Grid is
displayed, the rest two component are controls - unvisible to the user.

Link between components

In order to display some data from a database we have to link all three components
together. Using the Object Inspector, set the following:

DBGrid1.DataSource = DataSource1
DataSource1.DataSet = ADOTable1

We have now reached the hard part, to really get the data from our database we
have to build a ConnectionString. This string indicates where the database is

physically stored and how we are accessing it. When you double click the ellipsis
button at the ConnectionString property of the AdoTable component you get the next
dialog box:

When building a connection string we have two choices: use the Data Link File
(.UDL) or build a connection string by hand. Let's build it. Press the Build button -
this pops up the Data Link Properties dialog. This dialog has 4 pages. The Provider
tab allows you to specify the provider - select the Microsoft Jet 4.0 OLE DB Provider.
The Next button leads us to the second page: Connection. Select the ellipsis button
to browse for our database (AboutDelphi.mdb). Press the Test Connection button to
see if the connection is successful - it should be. Leave all the other pages as they
are. Finally, click on OK to close the Data Link Properties dialog, again OK to close
the ConnectionString dialog - the connection string is stored in the ConnectionString
property of the ADTTable component. The connection string should look something
like:

Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=C:\!gajba\About\aboutdelphi.mdb;
Persist Security Info=False

To finish, we have to set the table name that is to be accessed by the ADOTable
component - again use the Object Inspector.

ADOTable1.TableName = Applications

If you want to see the data at design time use the ADOTable Active property - set it
to True.

Ha! If you have done all the steps you now see the only one record (row) in the
Applications table. When you start the application you can even change the data in
the database. Of course, you cannot do much more - this is the simplest ADO
example I could think of.

This concludes this chapter. In the next chapter we will address all the ADO
component provided with Delphi and how they communicate with the rest data-
aware components to crate a powerfull Delphi database application.

Pictures inside a database

These days developing database applications requires more than just operating with
textual or numeric data. If you are, for example, developing an Internet/intranet or
multimedia based application, frequently there is a need to display pictures along
with text from a database.

In this third chapter of the Delphi database course, we'll see how to pull out and
display the graphical data (images) inside an Access database with ADO. Don't be
worried with the fact that working with images inside an Access database requires
more database programming skills than this course has provided so far. Let's
pretend that we know more to get more.

If you have followed this course from the beginning (specially the second chapter),
you know how to connect to a database and display the Applications (from our
working aboutdelphi.mdb database) table in a DBGrid. Remember, we used 3 data
components: DBGrid, ADOTable and DataSource to get and display the data from the
Applications table.

Back in the first chapter when we created our database, the last filed in the
Applications table was left blank (after filling our database with some dummy data).
The last field has the name Picture and is of the OLE object type.

If you scroll right to the last column of the DBGrid you'll see something like:

When using MS Access, we can store images (and other large data objects such as
sound or video) in a field that has the OLE object type. This type of data is referred
to as a Binary Large Object Bitmap (BLOB).

Naturally when working with images, several types of picture formats are available.
The most commonly used include JPEG, GIF and BMP. JPEG format has proven to be
widely accepted by Web masters because of the small amount of storage required (in
other words JPEGs are smaller than BMPs in bytes).

Delphi, of course, has means of handling BMP, GIF and JPEG graphic formats. The
rest of this article will deal with JPEG file formats.

Storing pictures in Access

Before going on to discussion about displaying the image inside a table within a
Delphi form, we need to add some graphical data to our database.

Start Access and open the aboutdelphi.mdb database. Open the Applications table (it
should have one row of data) and select the Picture field.

To add an image do the following:

1. Select Insert|Object... this will display the Insert Object dialog box.

2. Click on the Browse button, this pops up the Browse open dialog. Note: you
probably have some .jpg files on your computer, so you could use those, or if you
have Win 98 and newer, MS Paint will save pictures in this format, as will many other
programs. Navigate to a directory where your pictures are stored and select one.

Note: the text in the Picture field holds the name of an executable used to work with
JPEG files on your computer. Of course you don't see the picture in a table grid. To
actually see the graphics double click that field. This will load the image within the
JPG type associated application.

Now, when we have a picture inside a database, let's see how to display it inside a
Delphi form. We already have a Delphi form with data components on it from the
second chapter of this course.

The DBImage - take one

The first thing I do when trying to do something new with Delphi is to "ask" Delphi
Help for help. This is what the Help system replies: TDBImage (Data Controls page
on the component palette) represents a graphic image from a BLOB (binary large
object) field of the current record of a dataset. Use TDBImage to represent the value
of graphic fields. TDBImage allows a form to display graphical data from a dataset.
The DBImage is nothing more than a TImage component with some data aware
properties. The two most important ones are: DataSource and Field. The DataSource
property links the image component to a dataset. We have a DataSoure component
named DataSource1 on our form that represent a dataset. The Field property
indicates the field (in a table) that holds the image.

All clear, put a DBImage on form and leave the DBImage1 name. To actually link a
DBImage with a BLOB field in a Table we simply need to do the following assignment
(using the Object Inspector):

DBImage1.DataSource = DataSource1
DBImage1.Field = Picture

This should do the trick of displaying the JPEG image stored in the Picture field of the
Applications table.

To see whether this assignment will work the only thing we have to do is to set the
Active property of the ADOTable1 component to True. We can do this at design time
with the Object Inspector. Once you set it you'll get the following:

Now what? Why does it say "Bitmap image is not valid." We have a JPEG picture not
the BMP - is this the problem? Let's go back to the Help.

After a few clicks through the Help the conclusion is: to get the JPG inside a
database we need to use the TJpegImage object. To display the picture we need the
simple, non-data aware, version of the Image component. Even more we'll need to
use streams to load a picture from a BLOB object. The Help states that we should
use TADOBlobStream to access or modify the value of a BLOB or memo field in an
ADO dataset.

Pulling the Jpeg - take two!

Since we can do nothing with the DBImage - remove it from the form and place an
ordinary TImage component (Additional palette) on it. Name it ADOImage.
Unfortunately the Image component does not have any data-aware properties, so all
the code needed to show a picture from a table inside it will require a separate
procedure. The easiest thing to do is to put a Button on a form and place all the code
inside it's OnClick event. Name the button 'btnShowImage'.

To use the ADOBLOBStream the Help suggests to create an instance of
TADOBlobStream, use the methods of the stream to read from a graphic field in a
dataset, and then free the BLOB stream. Somewhere "in the middle" we'll need to
use LoadFromStream to load a Jpeg image from a TADOBlobStream object. The
Image's component Picture.Graphic property will be used to actually store and
display the picture.

Field object, what are those?
At this moment I'll assume that only a small amount of knowledge on Field objects
will be enough for you to keep with this chapter. In Delphi database development
one of the primary objects is the TField object. Field components are non-visual
objects that represent fields of the dataset at run (and design) time. The TADOTable
(and other TDataSet descendant) gives access to the Fields Editor at design time.
The Fields Editor enables you to select the fields that you want to include in the
dataset. More important, it creates a persistent lists of the field components used by
the dataset in your application. To invoke the Fields Editor double click the
TADOTable component. By default, the list of fields is empty. Click Add to open a
dialog box listing the fields in the Applications table. By default, all fields are
selected. Select OK. When Delphi gives (default) names to Fields the following
notation is used: Table name + Field name. This means that our picture field has the
name: ADOTable1Picture.

The TADOBlobStream Create method creates an instance of TADOBlobStream for
reading from or writing to a specific BLOB field object, which is in our case the
ADOTable1Picture field.

We will place the code in the OnClick event for a btnShowImage button. The code
should read the picture from the Picture field of the currently selected row. This is
how the code should look like:

uses jpeg;
...
procedure TForm1.btnShowImageClick(Sender: TObject);
var
 bS : TADOBlobStream;
 Pic : TJpegImage;
begin
 bS := TADOBlobStream.Create
 (AdoTable1Picture, bmRead);
 try
 Pic:=TJpegImage.Create;
 try

 Pic.LoadFromStream(bS);
 ADOImage.Picture.Graphic:=Pic;
 finally
 Pic.Free;
 end;
 finally
 bS.Free
 end;
end;

Ok, let's run the project now. Of course set the ADOTable1.Active property to True.
The form is displayed and after clicking on a button this is what we got:

Hm, what now? The code in the procedure is 100% correct but the image doesn't get
displayed! Remember the "Never give up, never surrender"? Let's go down to byte
level to see what's happening!

OLE object type format - take three!

All this leaves us with nothing but to store the picture to a disk (as an ordinary
binary file) and see what's inside it. One nice thing with picture files (formats) is that
all have some header that uniquely identifies the image. The JPG picture file starts
with the, so called, SOI marker that has the value of $FFD8 hex.

This next line of code stores the value of the Picture field to a file (BlobImage.dat) in
the working directory. Assign this code in the OnCreate event for the form, start the
project and remove the code.

ADOTable1Picture.SaveToFile('BlobImage.dat');

Once we have the file, we can use some Hex editor to see it's content.

Would you believe this! MS Access stores the path of a linked OLE object as part of
the object's definition in the OLE object field. Because the definition of OLE object
storage is not documented (!? this is straight from MS) there is no way to know what
gets written before the actual image data.

Think about this twice. First: we'll need to seek to the 'FFD8' and read the image
from there. Second, the 'FFD8' might not always be at the same position in the file.
Conclusion: we need a function that returns the position of the SOI marker for the
JPG file stored as OLE object in an Access database.

The correct way - take four!

Provided with the Blob type field our function should return the position of the 'FFD8'
string inside the ADOBlobStream. The ReadBuffer reads byte by byte from the
stream. Each call to ReadBuffer moves the position of the stream by one. When two
bytes together (as hex values) result in SOI marker the function returns the stream
position. This is the function:

function JpegStartsInBlob
 (PicField:TBlobField):integer;
var
 bS : TADOBlobStream;
 buffer : Word;
 hx : string;
begin
 Result := -1;
 bS := TADOBlobStream.Create(PicField, bmRead);
 try
 while (Result = -1) and
 (bS.Position + 1 < bS.Size) do
 begin
 bS.ReadBuffer(buffer, 1);
 hx:=IntToHex(buffer, 2);
 if hx = 'FF' then begin
 bS.ReadBuffer(buffer, 1);
 hx:=IntToHex(buffer, 2);

 if hx = 'D8' then Result := bS.Position - 2
 else if hx = 'FF' then
 bS.Position := bS.Position-1;
 end; //if
 end; //while
 finally
 bS.Free
 end; //try
end;

Once we have the position of the SOI marker we use it to seek to it in the ADOBlob
stream.

uses jpeg;
...
procedure TForm1.btnShowImageClick(Sender: TObject);
var
 bS : TADOBlobStream;
 Pic : TJpegImage;
begin
 bS := TADOBlobStream.Create
 (AdoTable1Picture, bmRead);
 try
 bS.Seek(JpegStartsInBlob(AdoTable1Picture),
 soFromBeginning);
 Pic:=TJpegImage.Create;
 try
 Pic.LoadFromStream(bS);
 ADOImage.Picture.Graphic:=Pic;
 finally
 Pic.Free;
 end;
 finally
 bS.Free
 end;
end;

Run the project and voila!

Who can now say that programming isn't FUN?

Note: in real code application we would have the code to read and display the image
from the current row in the AfterScroll event of a TDataSet (that is in the
ADOTable1AfterScroll event procedure). AfterScroll occurs after an application scrolls
from one record to another.

Data browsing and navigation

Welcome to the fourth chapter of a free DB Delphi Course! So far, this course has
provided enough information to connect to an Access database and even to display a
graphical data inside a database table. In the last chapter we were discussing some
advanced database programming techniques - let's go back to more *for
beginners* level now.

This time, you will see how to build a form (the real one) that can be used to browse
through the records of a database table. All the examples presented in the previous
chapters have used several data-enabled (ADOTable, DBGrid, ...) components
without to much explaining what each component is designed for, and how all those
data components link together.

Working together...

When developing ADO-based Delphi database applications, the components on the
Data Controls page, the ADO page, and the Data Access page of the component
palette allow our application to read from and write information to databases.

Every (ADO) data-aware Delphi form, in general, consist of · several data-aware
controls (Data Controls tab) that create a visual user interface (the look of the data
form).

· one DataSource component (Data Access tab) that represents an interface between
a dataset component and data-aware controls on a form.

· one or more dataset components (ADO tab) that provide access to the data
residing in a database table or query.

· a connection component (ADO tab) that points all the dataset components to a
specific data store.

Data Controls

Delphi's data-aware components are components that normally reside on a Standard
palette tab but have been modified to display and manipulate the content of data in
a dataset (table or query). The choice of controls is determined by how we want to
present the information and how we want to let users browse (and manipulate - add
or edit) through the records of datasets. DBEdit and DBMemo, for example, are used
to represent an individual record from a dataset. The DBGrid, on the other hand, is
generally used when representing the contents of an entire dataset. Since all the
data-aware controls are counterparts to the standard Windows controls - with a few
extra properties, building a functional database application should be a relatively
familiar task. All the data-aware components share one common property: Data
Source.

Data Source

Simply put, the DataSource component provides a mechanism to hook dataset
components to the visual data-aware components that display the data. You
generally will need one datasource component for each dataset component to
present a link to one or more data-aware controls.

Datasets

To create an ADO based application, Delphi provides us with four dataset
components: TAdoDataSet, TAdoTable, TAdoQuery and TAdoStoredProc. All of the
components are designed to retrieve, present and modify the data. All those
components can connect directly (as like in the previous chapter's examples) to an
ADO data store (such as data in an Access database) through it's ConnectionString
property or they can chare a single connection. When connecting through a

TAdoConnection the Connection specifies an ADO connection object to use to connect
to an ADO data store.

ADO Connection

The ADOConnection component is used to establish a connection with an ADO data
store. Although each ADO dataset component can directly connect to a database, we
will typically want to use the ADOConnection component since the component
provides methods and properties for activating the connection, accessing the ADO
data store directly and for working with transactions. In order to connect to a specific
database, we use the ConnectionString property.

Now, when we know the theory it's time to see some action. The next step is to build
a data form. Before we move on, it'll be a good idea to open the database with
Access and add some "dummy" data (3-4 records) to a database just to have some
operational data.

There are two different ways of creating forms with access to a data from a
database. The first way is to use the Database Form Expert. Unfortunately, the
Database Form Expert works only with the BDE-aware set of dataset components.
The second way is to place and connect all the data components by hand.

Defining the User Interface

We'll build our data browsing form in three steps. First step is to define the user
interface for the form. Next, the data access components are added and configured.
In the third and final step, the data-aware controls are added.

Before you start, close any open projects. Then use the following steps:

• Select File|New Application. This creates a new project containing an empty form,
a unit, and a project file.
• Add one one PageControl on the form. The PageControl can be found on the Win32
tab on the component palette. Let it have the default name, PageControl.
• Add two TabSheets on the PageControl. Set the Caption of the first TabSheet1 to
"Browse". Set the Caption of the second TabSheet1 to "Edit".
• Place a DataSource (DataAccess tab), an ADOTable and an ADOConnection (ADO
tab) component on the form. Leave all the components with their default names.
• Select the first page of the PageControl and place a DBGrid (Data Controls tab)
component on the Browse tabsheet.
• place a DBNavigator component (Data Controls tab). The navigator buttons are
used to move through the records in a table.
• By using the Object Inspector set the link between components like:

DBNavigator1.DataSource = DataSource1
DBGrid1.DataSource = DataSource1
DataSource1.DataSet = ADOTable1
ADOTable1.Connection = ADOConnection1
ADOConnection1.ConnectionString = ...

ADOConnection1.LoginPrompt = False
ADOTable1.Table = 'Applications'

Note: as discussed in the second chapter, the ConnectionString property indicates
where the data is physically stored and how we are accessing it. You can use the
same connection string as in the second chapter, or you can build one by invoking
the connection string editor. Setting the LoginPrompt property of the ADOConnection
component to False suppresses the database login from showing. Since we have not
set any password for our database we don't need the login prompt.

Fields

The DBGrid component is generally used when we want to present the entire
recordset to the user (data in a table). Even though we can use the DBGird to let the
user add, edit and delete records in a table - better approach is to use Field objects
for all the fields in a table. Field objects are mostly used to control the display and
editing of data in your applications. By using the Fields Editor we can set the list of
persistent field object for every column in a table. The Field Editor is invoked by
double clicking the DataSet component (ADOTable1). To add fields to the list of
persistent fields for a dataset right-click the list and choose Add Fields.

Rather than presenting all the data in a table to the user (within the DBGrid), we
might want to use field-oriented data aware components, such as edit boxes. The
DBEdit component for example, is a data-aware version of the TEdit class. DBEdit is
the building block of any data entry application.

The easiest way to place a DBEdit on the form and connect it with a field in a table is
to use the following:

1. Invoke the Fields editor by double clicking on the ADOTable component.
2. Select the Name field, for example. Let the second tab of the Page control be the
selected one.

3. Drag the Name field on the form.

When you drop the Name field on the tabsheet, Delphi places one Label and one
DBEdit component on it. The Caption of the Label component is the same as the
DisplayLabel property of the dragged field. The DBEdit component is linked to the
dataset's datasource through it's DataSource property. If you select more than one
filed from the Fields Editor and drag it on the form, Delphi will set as much
Label/DBEdit components as you have dropped on the form.

It's alive

Ok, all set up. Everything we have to do now is to activate the connection and scroll
through the records. The Active property of a dataset component (ADOTable)
indicates whether we have a live connection to a table or not. Setting the Active to
True or calling the Open method sets the Connected property of the ADOConnection
to True - and displays the data in related data-aware controls.

First, Move by, Last,...

Now, we are finally ready for some action. The next step is to see how to walk
through the recordset. The DBNavigator component gives a simple and friendly tool
for navigating through the recordset. In addition to it's navigational abilities, the
DBNavigator provides a means for manipulating the data with actions like Insert,
Delete or Cancel the changes. For example, if the we click the Delete button, the
correct record is deleted from the recordset. Each button is optional and you can mix
and match at will.

Using the button set we are able to skip to the last record or move to the previous
one. For example, clicking on the Last button sets the current record to the last

record in the recordset and disables the Last and Next buttons. Clicking the Last
button is functionally the same as calling the Last method of a dataset.
Note that one of the navigational operations that the DBNavigator cannot process is
moving forward or backward in a recordset by a number or records. The MoveBy
method of a dataset is used to position the cursor on a record relative to the active
record in the recordset.

Behind data in datasets
When developing database applications with Delphi and ADO, most of the work is
done with the help of dataset components. To create an ADO based application,
Delphi provides us with several dataset components. TAdoTable, TAdoQuery and
others are all designed to retrieve, present and modify the data inside a database
table or query. In this fifth chapter of the free database course we'll see exactly how
to present, navigate and read the data - by looking at some of the most interesting
datasets properties, events and methods.

Pick, set, connect and get

Since this is the fifth chapter, you should be familiar with the steps needed to create
a database form. Back in the fourth chapter we have created, by hand, a simple data
browsing form. The same form can be used to follow the discussion in this chapter.

The only (ADO) dataset component we used, by now, was TAdoTable. It's important
to know that both TADOQuery and TADODatSet (as dataset components) share the
same set of common methods and events.

Open Sesame ; Close Sesame

One of the great features of Delphi database development is that Delphi enables us
to work directly with the data while in design-mode. If you recall - in the previous
chapters we used the Active property at design time to open the live connection with
the data. It's understandable, that prior to working with the data in a table, an
application must first open a dataset. Delphi has two methods of performing this
function. As we already saw, the Active property can be set to True at design or run
time. We can also call the Open method at run time. For example, add the following
code to the form's OnCreate event handler to get the data from the ADOTable1
component:

ADOTable1.Open;

Note: Every ADO dataset can acess data in a database through its own ConnectionString property or through an
ADOConnection component (and it's ConnectionString). If the ADOTable1 component is connected to
ADOConnection1 component (preferable) than opening the ADOTable will result in activating the corresponding
ADOConection component. The ADOConnection provides two events that will be executed: OnWillConnect and
OnConnectComplete.

The Open method sets the Active property to True and activates the connection.
When we are done with using the connection we can close it by setting the Active
property to False or by calling the Close method. Generally you will place the call to
Close in the form's OnClose event handler:

ADOTable1.Close;

Before moving on, it's crucial to know that working with dataset's methods and
properties relies on knowing the current state of the data. Simply put, the State
property of a dataset determines what actions can and cannot occur at any moment
on a dataset.

How are you doing?

If the dataset is closed the State of the data indicates an Inactive connection. No
operations or actions or methods can be done on the data while the connection is
closed. The first time we open the connection the dataset is placed in the default
Browse state. You should always be aware of the state "your" data is in. For
example, when we connect a dataset to a DBGrid, the user is able to see the
underlying dataset (or recordset), but to be able to change some of the data the
State must be changed to Edit.

It's important to know that the dataset state constantly changes as an application
processes data. If, for example, while browsing the data in a DBGrid (Browse state)
the user starts editing the records the state will automatically change to Edit. Of
course, this is the default behaviour of the data-aware controls (DBGrid, DBEdit) with
their AutoEdit property set to True.

But, how do we get the state? The ADOTable (nor any other dataset component)
doesn't have an event that triggers when the State changes. Ok, let's see: for each
dataset component we generally use one datasource component to present a link to
one or more data-aware controls. That's it.

Every datasource component has an OnStateChange event that fires whenever the
state of the underlying dataset changes. Placing the following code for the
OnStateChange event handler causes the caption of the form to indicate the current
state of the ADOTable1 dataset component:

procedure TForm1.DataSource1StateChange
 (Sender: TObject);
var ds: string;
begin
 case ADOTable1.State of
 dsInactive: ds:='Closed';
 dsBrowse : ds:='Browsing';
 dsEdit : ds:='Editing';
 dsInsert : ds:='New record inserting';
 else
 ds:='Other states'
 end;
 Caption:='ADOTable1 state: ' + ds;
end;

In the last chapter we used the DBNavigator component to navigate through the
dataset. This component presents a visual tool for navigating through a dataset. As
stated, the DBNavigator has buttons that the user can click to move among dataset's
records at run-time.

Moving on from BOF to EOF

To iterate through a recordset and to sum some values we'll need to use methods of
a dataset component. Take a look at the following code:

...
 ADOTable1.DisableControls;
 try
 ADOTable1.First;
 while not ADOTable1.EOF do begin;
 Do_Summing_Calculation;
 ADOTable1.Next;
 end;
 finally
 ADOTable1.EnableControls;
 end;
...

The First method is used to set the current row in the dataset to the first one; the
Next moves to the next row in a dataset. The EOF (and BOF) property indicates
whether the dataset is at the last (first) row. In most cases, the dataset is connected
to one or more data-aware controls. When long iterations take place it's quite
interesting to "disconnect" those data-aware controls from the dataset - to prevent
data-aware controls from updating every time the active record changes. The
DisableControls and EnableControls are used to disable or enable data display in
controls associated with the dataset. The error catching (try-finally) part simply
ensures that all data-aware controls remain connected to the dataset if some
exception occurs. The Do_Summing_Calculation should obviously sum values
represented by fields in a dataset.

Bookmarking

Prior to calling the above code the dataset was probably at some *middle* position -
the user was browsing a dataset with a DBGrid. The code moves the *current* row
to the end (EOF) causing the program to loose the previous position. It would be
much better (and user friendly) if we could store the current position and make it the
current one (again) when the iteration completes. Of course, Delphi has that option.
The Bookmark property of the ADOTable (and any other TDataset decedent) can be
used to store and set the current record's position. Bookmarks are used like:

var Bok : TBookmarkStr
...
Bok := ADOTable1.Bookmark;
{iteration code}
ADOTable1.Bookmark := Bok;

The value of data

In the previous code the Do_Summing_Calculation part was left. Most likely that part
should get the value of some field (column) in a dataset and sum it.
When we talk about record values in datasets we talk about values of data fields. As
we have seen in the previous chapters the fields of a dataset are represented with
unvisible Field components. In the examples from previous chapters we used the
Object Inspector to set up a list of persistent fields for a dataset.

When data-aware controls are connected to a dataset and the user moves through a
recordset the corresponding field values are presented in those controls. When we
want to use the same values directly in code we need to know how to read them.
By default, when Delphi gives names to field objects the following notation is used:
Table name + Field name. This means that if we have the Type field in table the filed
object connected to that, hm, field will have the name: ADOTable1Type.

To access the data value from a field we can use several notations.

ADOTable1Type.Value
ADOTable1.Fields[x].Value
ADOTable1.FieldByName('Type').Value

Note: All fields of a dataset are stored in the Fields array. x represents the position of the field in the fields array.

The Value property for a field object holds the data value. Since Value is a varian
type it's preferable to cast fields value to a type that we currently need. In other
words an application should use the AsString property to convert a value (date,
integer, currency, ...) in a field to a string when the string representation of the
fields value is needed.

Now we can write the entire code to iterate through a recordset and count how many
'database' applications are in a table (of course we are talking about Applications
table in our AboutDelphi.mdb Access database).

var Bok : TBookmarkStr
 ict : Integer;
begin
 ict:=0;
 Bok:=ADOTable1.Bookmark;
 try
 ADOTable1.DisableControls;
 try
 ADOTable1.First;
 while not ADOTable1.EOF do begin;
 if ADOTable1.FieldByName('Type').AsString
 = 'database' then Inc(ict);
 ADOTable1.Next;
 end;
 finally
 ADOTable1.EnableControls;

 end;
 finally
 ADOTable1.Bookmark:=Bok;
 end;
 ShowMessage('Number of database
 apps: ' + IntToStr(ict));
end;

I agree with you! We should use ADOQuery for such purposes!

Data modifications

The main goal of developing database applications is to provide a means of
modifying the data. In the first five chapters this DB Course has shown how to
connect to an Access database, how to display the data from a database table and
how to navigate through the records in a table.

In this sixth chapter of the free database course we'll see exactly how to add, edit
and delete the data - by looking at some of the most interesting properties, events
and methods of the db-aware/enabled components and objects.

To follow this article you'll need to create a data form similar to ones we were
creating in the previous chapters. Use the standard set (DataSource, ADOTable and
ADOConnection) of components to connect to our Access database. This time we will
be exploring the Authors table. Recall that the Authors table has three fields
(columns): AuthorName, Email and Web. All three are text fields, in the first chapter
we added one "dummy" record.

Start a new Delphi project and on the default new form place all the data access
components and a DBGrid and a DBNavigator. Use the Object Inspector to set the
link between all those components. Set the Table name of the ADOTable1 component
to point to the Authors table. You should already be familiar with the steps to
achieve the connection. Use the Active property of the ADOTable to activate the

connection at design time. Or use the OnCreate/OnClose pair of event handlers for
the form to Open and Close the dataset at run-time.

One of the great advantages of database development with Delphi is in the existance
of the TField object. As already stated, in the previous chapters, database fields can
be persistent or created dynamically. It is recommended to set the persistent list of
fields for a (known) dataset. By using the Object Inspector add all three fields to the
list. Use dragging and dropping (as explained in the 5th chapter) to link a data-
aware DBEdits to fields in a database table.

Posting

When linking components in a way that the DBNavigator is used with the data-aware
components like the DBGrid operations like editing, deleting and inserting new
records to a table are done semi-automatically. For example, suppose you are
browsing the recordset with the DBGrid. When you start retyping the text in some
cell (editing the value of the underlying field) the data is not modified until the Post
method is called. The Post method (of a dataset) plays the central role in a Delphi
database application. When the dataset is in the Edit state, a call to Post modifies the
current record. The DBNavigator has the Post button (the one with the check mark
on it) that calls the Post method when clicked. You should be aware of the fact that
Post is called implicitly (for example) when you move to the next record - just by
pressing the down key while editing in a DBGrid.

When an application calls the Post method (implicitly or explicitly) several events
happen that can be handeled by Delphi. For example the BeforePost event (of a
dataset) is triggered before the "modified" record is actually modified and updated
with the new values. Your application might use the OnBeforePost to perform validity
checks on data changes before posting them to the database. This is a place where
so-called record-based validation should be done. Record-based validation is used
when other fields are involved in determining if a value entered for a field is valid. To
check for the validity of one field at a time you could use the OnValidate event
handler for that specific field. The OnValidate event handler is created from the
Object Inspector when the Fields editor is invoked and the appropriate field is
selected.

Editing a record

To be able to edit the data returned by a dataset the dataset must be in the Edit
state. The default behaviour of the data-aware controls (DBGrid, DBEdit) with their
AutoEdit property set to True is that once the user starts editing the values in DBEdit
controls the state changes (from Browse) to Edit. No error occurs if we try to put a
dataset in the Edit state while the dataset is already in the Edit state.

Programmatically editing and posting could look like:

ADOTable1.Edit;
ADOTable1AuthorName.AsString := 'Delphi Guide';
ADOTable1.Post;

The first line simply puts the dataset in the Edit state. The last one Posts the data to
the database. The second one assigns the string value 'Delphi Guide' to the
AuthorName field.

Take a look at (some of the) events that were triggered by the previous (simple)
call.

 ADOTable1BeforeEdit
 DataSource1StateChange
 DataSource1DataChange
 ADOTable1AfterEdit
 ADOTable1AuthorNameValidate
 ADOTable1AuthorNameChange
 DataSource1DataChange
 DataSource1StateChange
 ADOTable1BeforePost
 DataSource1StateChange
 ADOTable1AfterPost

Note: the DBGrid and the appropriate DBEdit component are refreshed to show the
new value for the AuthorName field.

Adding a new record

The simplest way to add a new record to a table is to click on the DBNavigators
Insert button (the one with the plus sign on it). The Insert method called adds/opens
a new - empty record in a table. The DBGrid display one empty row with the asterisk
sign in the first column. All three DBEdit components are empty and ready for the
user to enter values for the new record. The call to Insert results in calling series
related events, too.

Programmatically inserting and posting could look like:

with ADOTable1 do begin

 Insert;
 FieldByName('AuthorName').Value := 'Zarko Gajic';
 FieldByName('Email').Value := 'gzarko@sf.hr';
 FieldByName('Web').Value := 'http://sf.hr';
 Post;
end;

Note: the ADOTable component has the InsertRecord method that can be used to
create a new, empty record at in the dataset, fill fields with values, and post the
values to the database - all that with just one line of code. The previous example
could look like:

ADOTable1.InsertRecord('Zarko Gajic',
 'gzarko@sf.hr',
 'http://sf.hr')

"Undo" changes

While in the Edit (the user is changing the data) or in the Insert state (a new record
is to be added), the application can call the Cancel method. The DBNavigator has the
X sign on the appropriate button. If the record is being edited the call to Cancel
returns the original values to connected data-aware components. If the insertion was
canceled the empty row is "deleted". Cancel returns dataset to Browse state.

Deleting a record

The button with the minus sign on the DBNavigator calls the Delete method for the
dataset. There is no need to call the Post method after Delete. You can use the
BeforeDelete event to attempt to prevent the user from deleting the record from
table. Note that the DBNavigator has the ConfirmDelete property to help prevent the
user from accidentally deleting a record from the dataset. If you don't have the
DBNavigator connected to a dataset - pressing Ctrl+Delete in a DBGrid calls the
Delete method. If while executing the Delete method an error occurs the
OnDeleteError is triggered.

Queries with ADO
In this chapter of the free database course for Delphi beginners - focus on ADO, we'll
look at how you can take advantage of the TADOQuery component to boost your
ADO-Delphi productivity.

SQL with TADOQuery

The TADOQuery component provides Delphi developers the ability to fetch data from
one or multiple tables from an ADO database using SQL.

These SQL statements can either be DDL (Data Definition Language) statements
such as CREATE TABLE, ALTER INDEX, and so forth, or they can be DML (Data
Manipulation Language) statements, such as SELECT, UPDATE, and DELETE. The
most common statement, however, is the SELECT statement, which produces a view
similar to that available using a Table component.

Note: even though executing commands using the ADOQuery component is possible,
the ADOCommand component is more appropriate for this purpose. It is most often
used to execute DDL commands or to execute a stored procedure (even though you
should use the TADOStoredProc for such tasks) that does not return a result set.

The SQL used in a ADOQuery component must be acceptable to the ADO driver in
use. In other words you should be familiar with the SQL writing differences between,
for example, MS Access and MS SQL.

As when working with the ADOTable component, the data in a database is accessed
using a data store connection established by the ADOQuery component using its
ConnectionString property or through a separate ADOConnection component
specified in the Connection property.

To make a Delphi form capable of retrieving the data from an Access database with
the ADOQuery component simply drop all the related data-access and data-aware
components on it and make a link as described in the previous chapters of this
course. The data-access components: DataSource, ADOConnection along with
ADOQuery (instead of the ADOTable) and one data-aware component like DBGrid is
all we need. As already explained, by using the Object Inspector set the link between
those components as follows:

DBGrid1.DataSource = DataSource1
DataSource1.DataSet = ADOQuery1
ADOQuery1.Connection = ADOConnection1
//build the ConnectionString as described in the second chapter.
ADOConnection1.ConnectionString = ...
ADOConnection1.LoginPrompt = False

Doing a SQL query

The TADOQuery component doesn't have a TableName property as the TADOTable
does. TADOQuery has a property (TStrings) called SQL which is used to store the
SQL statement. You can set the SQL property's value with the Object Inspector at
design time or through code at runtime.

At design-time, invoke the property editor for the SQL
property by clicking the ellipsis button in the Object
Inspector.
Type the following SQL statement: "SELECT * FROM
Authors". The SQL statement can be executed in one
of two ways, depending on the type of the statement.
The Data Definition Language statements are generally
executed with the ExecSQL method. For example to
delete a specific record from a specific table you could
write a DELETE DDL statement and run the query with the ExecSQL method. The
(ordinary) SQL statements are executed by setting the TADOQuery.Active property
to True or by calling the Open method (essentialy the same). This approach is similar
to retrieving a table data with the TADOTable component.

At run-time, the SQL statement in the SQL property can be used as any StringList
object:

with ADOQuery1 do begin
 Close;
 SQL.Clear;
 SQL.Add:='SELECT * FROM Authors '
 SQL.Add:='ORDER BY authorname DESC'
 Open;
end;

The above code, at run-time, closes the dataset, empties the SQL string in the SQL
property, assigns a new SQL command and activates the dataset by calling the Open
method.

Note that obviously creating a persistent list of field objects for an ADOQuery
component does not make sense. The next time you call the Open method the SQL
can be so different that the whole set of filed names (and types) may change. Of
course, this is not the case if we are using ADOQuery to fetch the rows from just one
table with the constant set of fields - and the resulting set depends on the WHERE
part of the SQL statement.

Dynamic queries

One of the great properties of the TADOQuery components is the Params property. A
parameterized query is one that permits flexible row/column selection using a
parameter in the WHERE clause of a SQL statement. The Params property allows
replacable parameters in the predefined SQL statement. A parameter is a
placeholder for a value in the WHERE clause, defined just before the query is
opened. To specify a parameter in a query, use a colon (:) preceding a parameter
name.

At design-time use the Object Inspector to set the SQL property as follows:

ADOQuery1.SQL := 'SELECT * FROM Applications WHERE type =: apptype'

When you close the SQL editor window open the Parameters
window by clicking the ellipsis button in the Object Inspector.
The parameter in the preceding SQL statement is named
apptype. We can set the values of the parameters in the
Params collection at design time via the Parameters dialog
box, but most of the time we will be changing the parameters
at runtime. The Parameters dialog can be used to specify the datatypes and default
values of parameters used in a query.

At run-time, the parameters can be changed and the query re-executed to refresh
the data. In order to execute a parameterized query, it is necessary to supply a
value for each parameter prior to the execution of the query. To modify the
parameter value, we use either the Params property or ParamByName method. For
example, given the SQL statement as above, at run-time we could use the following
code:

with ADOQuery1 do begin
 Close;
 SQL.Clear;
 ParamByName('apptype'):='multimedia';
 Open;
end;

Navigating and editing the query

As like when working with the ADOTable component the ADOQuery returns a set or
records from a table (or two or more). Navigating through a dataset is done with the
same set of methods as described in the "Behind data in datasets" chapter.

In general ADOQuery component should not be used when editing takes place. The
SQL based queries are mostly used for reporting purposes. If your query returns a
result set, it is sometimes possible to edit the returned dataset. The result set must
contain records from a single table and it must not use any SQL aggregate functions.
Editing of a dataset returned by the ADOQuery is the same as editing the ADOTAble's
dataset.

An example

To see some ADOQuery action we'll code a small example. Let's make a query that
can be used to fetch the rows from various tables in a database. To show the list of
all the tables in a database we can use the GetTableNames method of the
ADOConnection component. The GetTableNames in the OnCreate event of the form
fills the ComboBox with the table names and the Button is used to close the query
and to recreate it to retrieve the records from a picked table. The () event handlers
should look like:

procedure TForm1.FormCreate(Sender: TObject);
begin
 ADOConnection1.GetTableNames(ComboBox1.Items);
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 tblname : string;
begin
 if ComboBox1.ItemIndex < 0 then
 Exit;
 tblname := ComboBox1.Items[ComboBox1.ItemIndex];
 with ADOQuery1 do begin
 Close;
 SQL.Text := 'SELECT * FROM ' + tblname;
 Open;
 end;
end;

Note that all this can be done by using the ADOTable and it's TableName property -
much easily.

Data filtering
As stated in one of the previous chapters, both TADOQuery and TADODatSet (as
dataset components) share the same set of common methods and events. On of the
features exposed by those datasets is the ability to narrow the scope of data that is
presented to the user.

Consider that you might have a database table with thousands of records, but your
users are interested in seeing or working on only a small subset of the table data.

To follow the article, set up the data form with the core components (data-access
and data-aware) as described in the previous chapters. The next code examples will
assume that you are working with the ADOTable component pointing to the
Applications table in our working Access database.

Filtering

Filtering is the method by which some data from the dataset is excluded from view
by displaying only those records that meet specific criteria. Filtering permits you to
present varying views of the data stored in a dataset without actually affecting that
data. This criteria is set through the Filter property of the dataset component
(TADOTable or TADOQuery), it can be set at both design and run time. Filter
property represents a string that defines the filter criteria. For example, if you want
to limit the displayed data (from the Applications table) to freeware applications
(cost $0.00), a filter such as the following will only display records that meet the
condition:

 ADOTable1.Filter := 'Cost = 0';

You can also add a value for Filter based on the text entered in a control. If the
filtered dataset should only display free applications and you want to enable users to
supply the type of the applications, a filter could be set as follows:

 ADOTable1.Filter :=
 'Cost = 0 AND
 Type = ' + QuotedStr(Edit1.Text);

By using combinations of the following operators, you can create quite sophisticated
filters.

Operator Meaning
< Less than
> Greater than
>= Greater than or equal to
<= Less than or equal to
= Equal to
<> Not equal to
AND Tests two statements are both True
NOT Tests that the following statement is not True
OR Tests that at least one of two statements is True

Filtered, FilterOptions, FilterGroup, OnFilterRecord

The Filtered property is a Boolean value (True or False) that determines if the string
in the Filter property is used to filter the dataset. When Filtered is False, the filtering
is ignored and the complete dataset is available to the application.

The FilterOptions is a set of two values - both used when filtering string fields. If the
foCaseInsensitive is included in the FilterOptions, comparison between the literal in
the Filter property string and the field values are case-insensitive. The
foNoPartialCompare forces Delphi to treat the asterisks (*) as a literal character
rather than as wildcard. By default, FilterOptions is set to an empty set.

The OnFilterRecord event fires each time the filtering is enabled and a new record
becomes the current one. You will generally use this event to filter records using a
criterion that can't be (easily) implemented using the Filter property.

procedure TForm1.ADOTable1FilterRecord
 (DataSet: TDataSet; var Accept: Boolean);
var
 AppZipSize : Single;
begin
 AppZipSize := ADOTable1.FieldByName('size').Value;
 Accept := (AppZipSize < 10);

end;

The key element here is the Accept parameter. You set the Accept parameter to True
for any rows that you want to show. The preceding code sets Accept to True for any
rows in which the Size field contains a value that is less than 10 (all apps whose
download size is less than 10 Kb).

The FilterGroup set property allows you to filter records depending on their status.

To filter or not to filter

Note that

• the Filter property behaves much like a WHERE clause in a SQL statement.
• you can have multiple conditions, specified in the Filter property, separated by
AND and OR operators.
• generally one should avoid Filters unless the fetched recordset is small. A filter is
done on the fly, and may or may not use the current index (filters are applied to
every record retrieved in a dataset).
• filters are rarely used with client/server databases, a SQL query (TADOQuery)
should be used to achieve the same effect that filters have on local databases.
• you should generally not use filtering with datasets on data modules. In a specific
situation when filtering a table that is never viewed from any other form, or a table
that makes use of a range, or sort order that is not used anywhere else in the
application - data modules *should* be avoided.
• to search a filtered dataset, you can use the FindFirst, FindNext, FindPrior, and
FindLast methods. These methods are the best way to search a filtered dataset
because the filter is reapplied each time one of these methods is called. Therefore, if
records that previously did not match the filter have been modified so that they now
match the filter, they will be included in the dataset before the search is performed.

Searching for data

A very common task for a database application is to search for a specific record
based on some criteria. In Delphi, ADOExpress components implement record
searching methods analogous to those found in the BDE approach. This chapter will
walk you through various methods of data seeking and locating while developing
ADO based Delphi database applications.

Note: the rest of this chapter deals with the aboutdelphi.mdb MS Access database
that was introduced in the first chapter of this course. To use the code examples
presented in this chapter, set up the data form with the core components (data-
access and data-aware) as described in the previous chapters. The following code
examples will assume that you are working with the ADOTable component pointing
to the Applications table in our database.

When you think of it, a searching algorithm could look like: start at the top of the
table, examine the field in each row - to see if it matches the criteria, stop the loop
on the selected record or at the bottom row - whichever comes first.
Hopefully, Delphi hides those *steps* from us. There are several ways to locate a
record in a dataset retrieved by an ADODataset (Table or Query) component.

Locate

This generic search method sets the current record to be the first row matching a
specified set of search criteria. By using the Locate method we can look for values of
one or more fields, passed in a variant array. The next code puts the Locate method
to work finding the first record that contains the string 'Zoom' in the Name field. If
the call to Locate returns True - the record is found and is set to be the current one.

AdoTable1.Locate('Name','Zoom',[]);

{...or...}

var ffield, fvalue: string;
 opts : TLocateOptions;

ffield := 'Name';
fvalue := 'zoom';
opts := [loCaseInsensitive];

if not AdoTable1.Locate(ffield, fvalue, opts) then
 ShowMessage(fvalue + ' not found in ' + ffield);

Lookup

Lookup does not move the cursor to the matching row, it only returns values from it.
Lookup returns a variant array containing the values from the fields specified in a
semicolon-delimited list of field names whose values should be returned from the
matching row. If there are no matching records, Lookup returns a Null variant.

The following code fills in a LookupRes variant array

var LookupRes: Variant;

LookupRes := ADOTable1.Lookup
 ('Name', 'Zoom', 'Author; Description');

if not VarIsNull(LookupRes) then
 ShowMessage(VarToStr(LookupRes[0])) //author name

One advantage of the Locate and Lookup methods is that they don't require the table
to be indexed. However, the Locate function will use the fastest method available to
search the table; if a table is indexed, Locate will use the index.

Indexing

An index helps find and sort records faster. You can
create indexes based on a single field or on multiple
fields. Multiple-field indexes enable you to distinguish
between records in which the first field may have the
same value. In most cases you'll want to index fields
you search/resort frequently. For example, if you
search for specific application type in a Type field, you
can create an index for this field to speed up the
search for a specific type. The primary key of a table is automatically indexed, and
you can't index a field whose data type is OLE Object. Note that if many of the
values in the field are the same, the index may not significantly speed up data
retrieval.
The main drawbacks are that indexes consume additional disk space, and inserting,
deleting and updating of data takes longer takes longer on indexed columns than on
non indexed columns.

When working with a Table component and the BDE (not ADO) Delhi provides us with
a number of functions that will search for values in a database table. Some of these
are Goto, GoToKey, GoToNearest, Find, FindKey, Find Nearest, etc. For a complete
reference see Delphi's help, topic: Searching for records based on indexed fields. The
ADO approach does not support those methods, instead it introduces a Seek method.

Seek

The ADO datasets Seek method uses an index when performing a search. If you
don't specify an index and you are working with an Access database, the database
engine will use the primary key index. Seek is used to find a record with a specified
value (or values) in the field (or fields) on which the current index is based. If Seek
does not find the desired row, no error occurs, and the row is positioned at the end
of the dataset. Seek returns a boolean value reflecting the success of the search:
True if a record was found or False if no matching record was found.

The GetIndexNames method of a TADOTable component retrieves a
list (for example: items of a combo box) of available indexes for a
table.

 ADOTable1.GetIndexNames(ComboBox1.Items);

The same list is available at design-time in the IndexName property of
a TADOTable component. The IndexFieldNames property can be used
as an alternative method of specifying the index to use for a table. In
IndexFieldNames, specify the name of each field to use as an index for
a table.

The Seek method has the following declaration:
function Seek(const KeyValues: Variant; SeekOption: TSeekOption =
soFirstEQ): Boolean;

· KeyValues is an array of Variant values. An index consists of one or more columns
and the array contains a value to compare against each corresponding column.
· SeekOption specifies the type of comparison to be made between the columns of
the index and the corresponding KeyValues.
SeekOption Meaning
soFirstEQ Record pointer positioned at the first matching record, if one is found, or at the end of the dataset

if one is not found
soLastEQ Record pointer positioned at the last matching record, if one is found, or at the end of the dataset if

one is not found.
soAfterEQ Record pointer positioned at matching record, if found, or just after where that matching record

would have been found.
soAfter Record pointer positioned just after where a matching record would have been found.
soBeforeEQ Record pointer positioned at matching record, if found, or just before where that matching record

would have been found.
soBefore Record pointer positioned just before where a matching record would have been found.
Note 1: the Seek method is supported only with server-side cursors. Seek is not
supported when the dataset's CursorLocation property value is clUseClient. Use the
Supports method to determine whether the underlying provider supports Seek.
Note 2: when you use the Seek method on multiple fields, the Seek fields must be in
the same order as the fields in the underlying table. If they are not, the Seek
method fails.
Note 3: you cannot use the Seek method on TADOQuery component.
To determine whether a matching record was found, we use the BOF or EOF property
(depending on the search direction). The next code uses the index specified in the
ComboBox to look for a value typed in the Edit1 edit box.
var strIndex: string;

strIndex := ComboBox1.Text; //from the code above

if ADOTable1.Supports(coSeek) then begin
 with ADOTable1 do begin
 Close;
 IndexName := strIndex;
 CursorLocation := clUseServer;
 Open;
 Seek (Edit1.Text, soFirstEQ);
 end;
 if ADOTable1.EOF then
 ShowMessage ('Record value NOT found');
end

ADO Cursors

Welcome to the chapter ten of the free Delphi ADO Database Course for beginners.
In the past nine chapters you were presented with some of the basic techniques

when developing ADO-based Delphi applications. We've seen how several data-
access components are used to connect and retrieve data from an Access database.
One thing is for sure: ADOExpress components fit quite nicely into the Delphi data
access model and map very closely to the basic data objects that ADO uses to access
data.

However, the way you use ADOExpress components is quite different from the
traditional Delphi programming with the BDE based TTable, and TQuery components.
If you're accustomed to working with the BDE dataset components, there are a
number of things you'll find different when you use ADO. The available properties are
different, and so should be the programming style.

At the heart of ADO is the Recordset object. The Recordset object (aka Dataset) is a
result of a Query command (SELECT statement of a TADOQuery component, for
example). When an ADO-based application retrieves rows from a database, an ADO
Recordset object encapsulates the data and the operations allowed on that data.
ADO uses cursors to contain the logical set of rows maintained for a recordset. The
cursor also provide the current position in the recordset. In development we use
cursors to create a recordset to scroll forward or backward in, or to have the
recordset pick up another user's changes.

Cursor?!

The simplest definition would be: a query result set where browsing is enabled and
the current position is known.

Within ADO, cursors have three functions. First, the cursor type
determines movement within the cursor and whether the recordset
will reflect users changes. Second, the cursor location determines
where to store the recordset while the cursor is open. Third, the
cursor's locking type specifies how an ADO datastore will lock the
rows when you want to make changes.

The understanding of cursors is extremely important. For example,
in order to get our recordset to do the things we want, we need to open certain ADO
recordsets with specific types of cursors. To RecordCount property, for example, is
NOT supported with forward-only cursors.

In the ADOExpress set, TCustomADODataSet encapsulates a set of properties,
events, and methods for working with data accessed through an ADO datastore. All
the TCustomADODataSet descendant classes (TADODataSet, TADOTable,
TADOQuery, and TADOStoredProc) share several common properties. Use the
CursorType, CursorLocation, and LockType properties to create the most efficient
recordset.

CursorType

Choosing the correct cursor has a direct impact on the success of your Delphi ADO-
based application. ADO provides four cursor options: dynamic, keyset, forward-only

and static. Since each cursor type behaves differently, you will greatly benefit from
understanding the capabilities of each one.

The CursorType property specifies how you move through the recordset and whether
changes made on the database are visible to the recordset after you retrieve it.
Delphi wraps ADO cursor types in the TCursorType.

CtDynamic
Allows you to view additions, changes and deletions by other users, and allows all
types of movement through the Recordset that don't rely on bookmarks; allows
bookmarks if the provider supports them. The Supports method of an ADODataset
indicates whether a recordset supports certain types of operations. The following
statement can be used to check if the provider supports bookmarks:
if ADOTable1.Supports(coBookmark) then ... Choose dynamic cursors if multiple
users insert, update, and delete rows in the database at the same time.

CtKeyset

Behaves like a dynamic cursor, except that it prevents you from seeing records that
other users add, and prevents access to records that other users delete. Data change
by other users will still be visible. It always supports bookmarks and therefore allows
all types of movement through the Recordset.

CtStatic

Provides a static copy of a set of records for you to use to find data or generate
reports. Always allows bookmarks and therefore allows all types of movement
through the Recordset. Additions, changes, or deletions by other users will not be
visible. A static cursor behaves like the result set from a BDE Query component with
its RequestLive property set to False.

ctForward-only

Behaves identically to a dynamic cursor except that it allows you to scroll only
forward through records. This improves performance in situations where you need to
make only a single pass through a Recordset.

Note: only ctStatic is supported if the CursorLocation property of the ADO dataset
component is set to clUseClient.

Note: if the requested cursor type is not supported by the provider, the provider may
return another cursor type. That is, if you try to set CursorLocation to clUseServer
and CursorType to ctDynamic, on an Access database, Delphi will change the
CursorType to ctKeyset.

CursorLocation

The CursorLocation property defines where the recordset is created when it's opened
— on the client or the server.

The data in a client-side cursor is "inherently disconnected" from the database. ADO
retrieves the results of the selection query (all rows) and copies the data to the client
before you start using it (into the ADO cursor). After you make changes to your
Recordset, the ADO translates those changes into an action query and submits that
query to your database through the OLE DB provider. The client-side cursor behaves
like a local cache. In most cases, a client-side cursor is preferred, because scrolling
and updates are faster and more efficient, although returning data to the client
increases network traffic.

Using the server-side cursor means retrieving only the required records, requesting
more from the server as the user browses the data. Server-side cursors are useful
when inserting, updating, or deleting records. This type of cursor can sometimes
provide better performance than the client-side cursor, especially in situations where
excessive network traffic is a problem.

You should consider a number of factors when choosing a cursor type: whether
you're doing more data updates or just retrieving data, whether you'll be using ADO
in a desktop application or in an Internet-based application, the size of your
resultset, and factors determined by your data store and environment. Other factors
might restrict you as well. For example, the MS Access doesn't support dynamic
cursors; it uses keyset instead. Some data providers automatically scale the
CursorType and CursorLocation properties, while others generate an error if you use
an unsupported CursorType or CursorLocation.

LockType

The LockType property tells the provider what type of locks should be placed on
records during editing. Locking can prevent one user from reading data that is being
changed by another user, and it can prevent a user from changing data that is about
to be changed by another user.

Modifying a record in an Access database locks some neighboring records. This is
because Access uses, so called, page locking strategy. This means that if a user is
editing a record, some other user won't be allowed to modify that record, or even to
modify the next few records after or before it.

In Delphi, the TADOLockType specifies the types of locks that can be used. You can
control row and page locking by setting the appropriate cursor lock option. To use a
specific locking scheme, the provider and database type must support that locking
scheme.

LtOptimistic

Optimistic locking locks the record only when it's physically updated. This type of
locking is useful in conditions where there is only a small chance that a second user
may update a row in the interval between when a cursor is opened and the row is
finally updated. The current values in the row are compared with the values retrieved
when the row was last fetched.

LtPessimistic

Pessimistic locking locks each record while it's being edited. This option tells ADO to
get an exclusive lock on the row when the user makes any change to any column in
the record. The ADOExpress components don't directly support pessimistic record
locking because ADO itself does not have any way to arbitrarily lock a given record
and still support navigating to other records.

LtReadOnly

Read only locking simply does not allow data editing. This lock is useful in conditions
where your application must temporarily prevent data changes, but still can allow
unrestricted reading. Read only locking with CursorType set to ctForwardOnly is ideal
for reporting purposes.

LtBatchOptimistic

BatchOptimistic locking is used with disconnected recordsets. These recordsets are
updated locally and all modifications are sent back to the database in a batch.

From Paradox to Access with ADO
and Delphi

Chapter 5 of this course (Free Delphi Database Course for Beginners - focus on ADO
techniques) featured the ADOQuery component designed to enable Delphi developers
to use the SQL language with ADO. The SQL statements can either be DDL (Data
Definition Language) statements such as CREATE TABLE, ALTER INDEX, and so forth,
or they can be DML (Data Manipulation Language) statements, such as SELECT,
UPDATE, and DELETE.

In this chapter, I'll focus on the TADOCommand components and using the SQL DDL
language to help porting your BDE/Paradox data to ADO/Access.

Data definition language

Creating a database programmatically isn't something most developers do every day
- we all use some kind of visual tool, like MS Access for maintaining a MDB file.
Unfortunately, sometimes you'll need to create and destroy databases and database
objects from code. The most basic technique in use today is Structured Query
Language Data Definition Language (SQL DDL). Data definition language (DDL)
statements are SQL statements that support the definition or declaration of database
objects (for example, CREATE TABLE, DROP TABLE, CREATE INDEX and similar).
My intention here is not to teach you the DDL language, if you are familiar with the

SQL DML then DDL should be no barrier for you. Note that working with DDL can be
quite tricky, every database vendor generally provides its own extensions to SQL.

Let's quickly take a look at a simple CREATE TABLE statement:

CREATE TABLE PhoneBook(
 Name TEXT(50)
 Tel TEXT(50)
);

This DDL statemnt (for MS Access), when executed, will create a new table named
PhoneBook. The PhoneBook table will have two fields, Name and Tel. Both fields are
of the string (TEXT) type and the size of the fields is 50 characters.

TFieldDef.DataType

Obviously, data type that represents a string in Access is TEXT. In Paradox it's
STRING. In order to port Paradox tables to Access we'll have to know what data
types are available and what are their names. When working with the BDE and
Paradox tables, the TFieldDef.DataType determines the type of a physical field in a
(dataset) table. To successfully migrate Paradox tables to Access you need to have a
function that "transforms" a Paradox field type to an Access type. The next function
checks the type of the field (fd) and returns the corresponding Access type along
with a field size when needed for a CREATE TABLE DDL statement.

function AccessType(fd:TFieldDef):string;
begin
 case fd.DataType of
 ftString: Result:='TEXT('+IntToStr(fd.Size)+')';
 ftSmallint: Result:='SMALLINT';
 ftInteger: Result:='INTEGER';
 ftWord: Result:='WORD';
 ftBoolean: Result:='YESNO';
 ftFloat : Result:='FLOAT';
 ftCurrency: Result := 'CURRENCY';
 ftDate, ftTime, ftDateTime: Result := 'DATETIME';
 ftAutoInc: Result := 'COUNTER';
 ftBlob, ftGraphic: Result := 'LONGBINARY';
 ftMemo, ftFmtMemo: Result := 'MEMO';
 else
 Result:='MEMO';
 end;
end;

ADOX

ADO Extensions for Data Definition Language and Security (ADOX) is an extension to
the ADO objects and programming model. ADOX gives developers a rich set of tools
for gaining access to the structure, security model, and procedures stored in a
database.

To use ADOX in Delphi, you should establish a reference to the ADOX type library.
1. Select Project | Import Type Library
3. Choose "Microsoft ADO Ext 2.x for DDL and Security (Version 2.x)"
4. Change "TTable" to "TADOXTable"
5. Change "TColumn" to "TADOXColumn"
6 .Change "TIndex" to "TADOXIndex"
7. Press Install button (rebuilding packages)
8. Press OK once and Yes twice
9. File | Close All | Yes

The top-level object in the ADOX object model is the Catalog object. It provides
access to the Tables, Views, and Procedures collections, which are used to work with
the structure of the database, and also provides the Users and Groups collections,
which are used to work with security. Each Catalog object is associated with only one
Connection to an underlying data source.

We'll leave ADOX (at least for now) and stick to ADOExpress.

TADOCommand

In ADOExpress, the TADOCommand component is the VCL representation of the ADO
Command object. The Command object represents a command (a query or
statement) that can be processed by the data source. Commands can then be
executed using the ADOCommand's Execute method. TADOCommand is most often
used for executing data definition language (DDL) SQL commands. The
CommandText property specifies the command to execute. The CommandType
property determines how the CommandText property is interpreted. The cmdText
type is used to specify the DDL statement. Although it makes no sense to use the
ADOCommand component to retrieve a dataset from a table, query, or stored
procedure, you can do so.

It's time for some real code...
The following project will demonstrate how to:

• get the list of all tables in a BDE alias
• use TFieldDefs in order to retrieve the definition (name, data type, size, etc.) of
fields in a table.
• create a CREATE TABLE statement
• copy data from BDE/Paradox table to ADO/Access table.

Basically what we want to do is to copy several tables from DBDemos to our
aboutdelphi.mdb Access database. The structure of the aboutdelphi.mdb is discussed
in the first chapter.

Let's do it step by step:

GUI

Start Delphi - this creates a new project with one blank form. Add two Buttons, one
ComboBox and one Memo component. Next, add a TTable, TADOTable,
TADOConnection and a TADOCommand component. Use the Object Inspector to set
the following properties (leave all the other properties as they are - for example the
Memo should have the default name: Memo1):

Button1.Caption = 'Construct Create command'
Button2.Caption = 'Create Table and copy data'
ComboBox.Name = cboBDETblNames;

//as described in the second chapter
ADOConnection1.ConnectionString = ...
TADOTable.Name = ADOTable
ADOTable.Connection = ADOConnection1
TADOCommand.Name = ADOCommand
ADOCommand.Connection = ADOConnection1
TTable.Name = BDETable
BDETable.DatabaseName = 'DBDEMOS'

Code

To retrieve a list of the tables associated with a given database (DBDEMOS) we use
the next code (OnCreate for the form):

procedure TForm1.FormCreate(Sender: TObject);
begin
 Session.GetTableNames('DBDEMOS',
 '*.db',False, False,
 cboBDETblNames.Items);
end;

When you start the project the ComboBox has all the (Paradox) table names in the
DBDEMOS alias directory. In the code that follows, we'll pick the Country table.

The next task is to create a CREATE TABLE DDL statement. This gets done in the
'Construct Create command' button's OnClick procedure:

procedure TForm1.Button1Click(Sender: TObject);
//'Construct Create command' button
var i:integer;
 s:string;
begin
 BDETable.TableName:=cboBDETblNames.Text;
 BDETable.FieldDefs.Update;

 s:='CREATE TABLE ' + BDETable.TableName + ' (';

 with BDETable.FieldDefs do begin
 for i:=0 to Count-1 do begin
 s:=s + ' ' + Items[i].Name;
 s:=s + ' ' + AccessType(Items[i]);
 s:=s + ',';
 end; //for
 s[Length(s)]:=')';
 end;//with

 Memo1.Clear;
 Memo1.lines.Add (s);
end;

The above code simply parses the field definitions for the selected table
(cboBDETblNames) and generates a string that will be used by the CommandText
property of the TADOCommand component.

For example, when you select the Country table the Memo gets filled with the next
string:

CREATE TABLE country (
 Name TEXT(24),
 Capital TEXT(24),
 Continent TEXT(24),
 Area FLOAT,
 Population FLOAT
)

And finally, the code for the 'Create Table and copy data' button drops a table
(DROP..EXECUTE), creates a table (CREATE..EXECUTE), and then copies data into the new
table (INSERT...POST). Some error handling code is provided, but the code will fail if, for
example, the (new) table does not already exist (since it first gets dropped).

procedure TForm1.Button2Click(Sender: TObject);
//'Create Table and copy data' button
var i:integer;
 tblName:string;
begin
 tblName:=cboBDETblNames.Text;

//refresh
 Button1Click(Sender);

//drop & create table
 ADOCommand.CommandText:='DROP TABLE ' + tblName;
 ADOCommand.Execute;

 ADOCommand.CommandText:=Memo1.Text;
 ADOCommand.Execute;

 ADOTable.TableName:=tblName;

//copy data

 BDETable.Open;
 ADOTable.Open;
 try
 while not BDETable.Eof do begin
 ADOTable.Insert;
 for i:=0 to BDETable.Fields.Count-1 do begin
 ADOTable.FieldByName
 (BDETable.FieldDefs[i].Name).Value :=
 BDETable.Fields[i].Value;
 end;//for
 ADOTable.Post;
 BDETable.Next
 end;//while
 finally
 BDETable.Close;
 ADOTable.Close;
 end;//try
end;

That's it. Check out your Access database now...voila there is a Country table with all
the data from DBDEMOS.

Now you can port all your Paradox tables to Access. Few questions, however, stay
unanswered. The first one is: how to add index definitions (CREATE INDEX ON ...) to
tables. The second one is: how to create an empty Access database. I'll leave those
(and others you can think of) for the Forum or for some future article.

Master detail relationships

Master-detail data relationships are a fact of life for every Delphi database
developer; just as data relationships are a fundamental feature of relational
databases.

In the previous chapters of this course, we've invariably used only one table from
our "demo" aboutdelphi.mdb MS Access database. In real time database
programming, the data in one table is related to the data in other tables. In general,
tables can be related in one of three different ways: one-to-one, one-to-many or
many-to-many. This chapter will show you how to use one-to-many database
relationships to deal effectively with the problem of joining two database tables to
present information.

A one-to-many relationship, often referred to as a "master-detail" or "parent-child"
relationship, is the most usual relationship between two tables in a database.

Common scenarios include customer/purchase data, patient/medical-record data,
and student/course-result data. For example, each customer is associated with at
least one order record. Valued customers have many order records involving
significant sums and often a user needs to view one in connection with the other. In
a one-to-many relationship, a record in Table A can have (none or one or) more than

one matching record in Table B, but for every record in Table B there is exactly one
record in Table A.

A typical master-detail data browsing form displays the results of a one-to-many
relationship, where one DBGrid displays (or set of data enabled controls) the results
of the first or master table. It then tracks a selection in the first DBGrid to filter the
results of a second table used to display the details of the selection in the second
DBGrid.

When working with the BDE and Delphi, the simplest way to assemble a master-
detail form is to use the Database Form Wizard. Wizard simplifies the steps needed
to create a tabular or data-entry form by use of an existing database, unfortunately
it is designed to use the BDE versions of TTable and TQuery components. Everything
the wizard does, we can do by hand.

Since, through this course, we are working with the ADOExpress set of Delphi
components, we'll need to set all the components step by step. Firstly we have to
make sure that we have two tables in a master-detail relationship.

MS Access relationships

Our focus will be on the following two tables: Customers and Orders. Both tables are
a part of the DBDEMOS database that comes with Delphi. Since both tables are
Paradox tables, we'll use the code from the previous article to port them to our
working aboutdelphi.mdb MS Access database.

Notice that when you port those tables to Access both of them have no index or
primary key nor are they linked in any way in Access.

The power in a relational database management system such as MS Access comes
from its ability to quickly find and bring together information stored in separate
tables. In order for MS Access to work most efficiently, each table in your database
should include a field or set of fields that uniquely identifies each individual record
stored in the table. If two tables are liked in a relation (of any kind) we should set
that relation with the MS Access.

Customers-Orders relation

To set up the relationship, you add the field or fields that make up the primary key
on the "one" side of the relationship to the table on the "many" side of the
relationship. In our case, you would add the CustNo field from the Customers table
to the Orders table, because one customer has many orders. Note that you have to
set the CustNo in Customers to be the primary key for the table.

When creating a relation between two tables MS Access provides us with the
Referential Integrity feature. This feature prevents adding records to a detail table
for which there is no matching record in the master table. It will also cause the key
fields in the detail table to be changed when the corresponding key fields in the
master are changed - this is commonly referred to as a cascading update. The
second options is to enable cascading deletes. This causes the deletion of all the
related records in a detail table when the corresponding record in the master table
gets deleted. These events occur automatically, requiring no intervention by a
Delphi application using these tables.

Now, when we have all the relations set up, we simply link few data components to
create a master-detail data browsing Delphi form.

Setting up Master/Detail with ADOExpress

Creating a master-detail data form is not to much complicated. Have an empty
Delphi form, and just follow the steps:

1. Select the ADO page on the Component palette. Add two TADOTable
components and one TADOConnection to a form.

2. Select the Data Access page on the Component palette. Add two TDataSource
components to a form.

3. Select Data Controls page on the Component palette. Place two TDbGrid
components on a form. Add two DBNavigator components, too.

4. Use the ADOConnection, the ConnectionString property, to link to the
aboutdelphi.bdb MS Access database, as explained in the first chapter of this
course.

5. Connect DBGrid1 with DataSource1, and DataSource1 with ADOTable1. This
will be the master table. Connect DBNavigator1 with DataSource1.

6. Connect DBGrid2 with DataSource2, and DataSource2 with ADOTable2. This
will be the detail table. Connect DBNavigator2 with DataSource2.

7. Set ADOTable1.TableName to point to the Customers table (master).
8. Set ADOTable2.TableName to point to the Orders table (detail).

If you, at this moment, set the Active property of both ADOTable components to
true, you'll notice that the entire Orders table is displayed - this is because we
haven't set up the master-detail relationship yet.

Your form should look something like:

MasterSource and MasterFields

The MasterSource and MasterFields properties of the TADOTable component define
master-detail relationships in Delphi/ADO database applications.

To create a master-detail relationships with Delphi, you simply need to set the detail
table's MasterSource property to the DataSource of the master table and its
MasterFields property to the chosen key field in the master table.

In our case, first, set ADOTable2.MasterSource to be DataSource1. Second, activate
the Field Link Designer window to set the MasterFields property: in the Detail Fields
list box and the Master Fields list box select the CustNo field. Click Add and OK.

These properties keep both tables in synchronization, so as you move through the
Customers table, the Orders table will only move to records which match the key
field (CustNo) in the Customers table.

Each time you highlight a row and select a new customer, the second grid displays
only the orders pertaining to that customer.

When you delete a record in a master table - all the corresponding record in the
detail table are deleted. When you change a linked field in a record in a master table
- the corresponding field in the detail table gets changed to (in as many records as
needed).

Simple as that!

Stop. Note that creating a master-detail form with Delphi is not enough to support
referential integrity features on two tables. Even though we can use methods
described here to display two tables in a parent-child relation; if those two tables are

not linked (one-to-many) within MS Access - cascading updates and deletes won't
take place if you try to delete or update the "master" record.

ADO Shaping

Shaped recordsets are an alternative to master-detail relationships. Beginning with
ADO 2.0, this method is available. Shaped recordsets allow the developer to retrieve
data in a hierarchical fashion. The shaped recordset adds a special "field" that is
actually a recordset unto itself. Essentially, data shaping gives you the ability to build
hierarchical recordsets. For instance, a typical hierarchical recordset might consist of
a parent recordset with several fields, one of which might be another recordset.

For an example of the SHAPE command take a look at the shapedemo project that
shiped with Delphi (in the Demos\Ado directory). You must specify the shaping
provider in your connection string, by adding Provider=MSDataShape; to the
beginning.

SHAPE {select * from customer}
APPEND ({select * from orders} AS Orders
RELATE CustNo TO CustNo)

Although it takes some time to master the SHAPE command that's used to create
these queries, it can result in significantly smaller resultsets. Data shaping reduces
the amount of traffic crossing a network, provides more flexibility when using
aggregate functions, and reduces overhead when interfacing with leading-edge tools
like XML.

New...Access Database from Delphi

Chapter 11 of this course (Free Delphi Database Course for Beginners - focus on ADO
techniques) featured the ADOCommand component which is most often used for
executing data definition language (DDL) SQL commands. We've presented a way of
porting your existing Paradox/BDE tables to MS Access. However few questions have
stayed unanswered: how to create an empty Access database, how to add an index
to an existing table, how to join two tables with referential integrity,

Many of the attendees of this course have complained that they do not have MS
Access installed on their computer - and are unable to create a sample database
(aboutdelphi.mdb) that is presented in the first chapter and used through this
course.

In this chapter, we'll again focus on the TADOCommand and the ADOX to see how
set up an empty MS Access database from "nothing".

ADOX

As stated in the mentioned chapter, ADO Extensions for Data Definition Language
and Security is an extension to the ADO objects and programming model. ADOX
gives developers a rich set of tools for gaining access to the structure, security
model, and procedures stored in a database.

Even though ADOX is part of ADO, Delphi does not wrap it inside ADOExpress. To
use ADOX with Delphi, you should establish a reference to the ADOX type library.
The description of the ADOX library is "Microsoft ADO Ext. for DDL and Security." The
ADOX library file name is Msadox.dll. You'll have to import the ADOX library into the
IDE.

To use ADOX in Delphi, you should establish a reference to the ADOX type library.

1. Select Project | Import Type Library
2. Choose "Microsoft ADO Ext 2.x for DDL and Security (Version 2.x)"
3. Change "TTable" to "TADOXTable"
4. Change "TColumn" to "TADOXColumn"
5. Change "TIndex" to "TADOXIndex"
6. Change "TKey" to "TADOXKey"
7. Change "TGroup" to "TADOXGroup"
8. Change "TUser" to "TADOXUser"
9. Change "TCatalog" to "TADOXCatalog"
10. Press Install button (rebuilding packages)
11. Press OK once and Yes twice
12. File | Close All | Yes

This process creates a ADOX_TLB.pas unit and places its name in the uses clause of
the current project. The process also places 7 new components on the ActiveX page
of the component palette. It is very important to change the class names as
described in step 3. If you omit that part Delphi will complain that class TTable is
already defined - this is because the VCL already has the BDE version of TTable
component.

aboutdelphi.mdb

Before we move on, you should recall that our sample aboutdelphi.mdb database has
three tables: Application, Authors and Types. Both Authors and Types are child
tables to Applications. Both Authors and Types have a primary index.

The Delphi Project

Our task is to have Delphi do all the work. We want to create a new database from
code, add all three tables from code, add indexes from code and even set up a
referential integrity between those tables - again from code.

As usual, have an empty Delphi form. Add two button component. Add a
TADOConnection, TADOCommand. We'll use TADOCommand with a DDL language to
create and link tables. Add a TADOXCatalog component (ActiveX page). The
TADOXCatalog will do the trick of creating a new database. Let the name of the first
button be btnNewDatabase (caption: 'Create database'), the second one should be
called btnAddTables (caption: 'Create and link tables'). All the other components
should have the default name. In this chapter we'll link those components from code.
Therefore, you do not need to set up a ConnectionString for the ADOConnection
component and the Connection property for the ADOCOmmand component now.

New...Database

Before we move on to creating tables and linking them we have to create a new
(empty) database. This is the code:

procedure TForm1.btnNewDatabaseClick(Sender: TObject);
var
 DataSource : string;
 dbName : string;
begin
 dbName:='c:\aboutdelphi.mdb';

 DataSource :=
 'Provider=Microsoft.Jet.OLEDB.4.0' +
 ';Data Source=' + dbName +
 ';Jet OLEDB:Engine Type=4';

 ADOXCatalog1.Create1(DataSource);
end;

Would you belive - simple as that. Obviously the ADOXCatalog has a method called
Create1 that creates a new database. Pretty unusual since we've accustomed that
Create methods are used to create an object from a class. The ADOXCatalog really
has a Create method which has nothing in common to Create1.

The variable DataSource looks pretty much like a standard connection string for the
TADOConnection component. There is only one addition, the Jet OLEDB:Engine
Type=X part. Engine type 4 is used to create an MS Access 97 database, type 5 is for
MS Access 2000.

Note that the above code does not check for the existance of the c:\aboutdelphi.mdb
database. If you run this code twice it will complain that the databae already exists.

Add table, create index, set referential integrity

The next step is to create all tables (three of them), add indexes, and create
referential integrity. Even though we could use ADOX, that is, TADOXTable,
TADOXKey, etc. I'm somehow more familiar with the (standard) DDL language and
the TADOCommand component. Back in the chapter 11 of this course we discussed
database tables porting issues. This time we'll create tables from nothing.
The following peaces of code are to be placed inside the button's btnAddTables
OnClick even handler, I'll slice the code and add some explanations in between.

First, we need to connect to the newly created database with the TADOConnection
component. Since we've left the ADOCommand unattached to ADOConnection - we'll
link them from code (this should be obvious by now):

procedure TForm1.btnAddTablesClick(Sender: TObject);
var
 DataSource : string;
 cs : string;
begin
 DataSource :=
 'Provider=Microsoft.Jet.OLEDB.4.0'+
 ';Data Source=c:\aboutdelphi.mdb'+
 ';Persist Security Info=False';

 ADOConnection1.ConnectionString := DataSource;
 ADOConnection1.LoginPrompt := False;
 ADOCommand1.Connection := ADOConnection1;
 ...

Second, we create both Types and Authors tables, the structures are given in the
first chapter. To build a new table with DDL by using the Jet SQL, we use the
CREATE TABLE statement by providing it the name the table, name the fields, and
fiedl type definitions. Then, the Execute method of the ADOCommand component is
used.

...

 cs:='CREATE TABLE Types (typename TEXT(50))';
 ADOCommand1.CommandText := cs;
 ADOCommand1.Execute;

 cs:='CREATE TABLE Authors (' +
 'authorname TEXT(50),' +
 'email TEXT(50),' +
 'web TEXT(50))';
 ADOCommand1.CommandText := cs;
 ADOCommand1.Execute;
...

Next, we add indexes to those two tables. When you apply an index to a table, you
are specifying a certain arrangement of the data so that it can be accessed more
quickly. To build an index on a table, you must name the index, name the table to
build the index on, name the field or fields within the table to use, and name the
options you want to use. You use the CREATE INDEX statement to build the index.
There are four main options that you can use with an index: PRIMARY, DISALLOW
NULL, IGNORE NULL, and UNIQUE. The PRIMARY option designates the index as the
primary key for the table.

...
 cs:='CREATE INDEX idxPrimary '+
 'ON Types (typename) WITH PRIMARY';
 ADOCommand1.CommandText := cs;
 ADOCommand1.Execute;

 cs:='CREATE INDEX idxPrimary '+
 'ON Authors (authorname) WITH PRIMARY';
 ADOCommand1.CommandText := cs;
 ADOCommand1.Execute;
...

Finally, we add the last table. Applications table is linked with both Types and
Authors in a master detail relationship. Back in the last chapter we were discussing
one-to-many relationships that define the following: for every record in the master
table, there are one or more related records in the child table. In our case, one
Author (Authors table) can post more Applications; and the Application can be of
some type. When defining the relationships between tables, we use the CONSTRAINT
declarations at the field level. This means that the constraints are defined within a
CREATE TABLE statement.

...
 cs:='CREATE TABLE Applications ('+
 ' Name TEXT(50),'+
 ' Description TEXT(50),'+
 ' Author TEXT(50) CONSTRAINT idxauthor '+
 'REFERENCES Authors (authorname),'+
 ' Type TEXT(50) CONSTRAINT idxtype '+
 'REFERENCES Types (typename),'+
 ' Size FLOAT,'+

 ' Cost CURRENCY,'+
 ' DateUpl DATETIME,'+
 ' Picture LONGBINARY)';

 ADOCommand1.CommandText := cs;
 ADOCommand1.Execute;

end;//btnAddTablesClick

That's it. Now run the project, click the btnNewDatabase button, click the
btnAddTables button and you have a new (empty) aboutdelphi.mdb database in the
root of the C disk. If you have MS Access installed on your system you can open this
database with it and check that all thje tables are here and in the Relationships
window all the tables are linked.

Charting with Databases

In most modern database applications some kind of graphical data representation is
preferable or even required. For such purposes Delphi includes several data aware
components: DBImage, DBChart, DecisionChart, etc. The DBImage is an extension
to an Image component that displays a picture inside a BLOB field. Chapter 3 of this
database course discussed displaying images (BMP, JPEG, etc.) inside an Access
database with ADO and Delphi. The DBChart is a data aware graphic version of the
TChart component.

Our goal in this chapter is to introduce the TDBChart by showing you how to
integrate some basic charts into your Delphi ADO based application.

TeeChart

The DBChart component is a powerful tool for creating database charts and graphs.
It is not only powerful, but also complex. We wont be exploring all of its properties
and methods, so you'll have to experiment with it to discover all that it is capable of
and how it can best suite your needs. By using the DBChart with the TeeChart
charting engine you can quickly make graphs directly for the data in datasets without
requiring any code. TDBChart connects to any Delphi DataSource. ADO recordsets
are natively supported. No additional code is required - or just a little as you'll see.
The Chart editor will guide you through the steps to connect to your data - you don't
even need to go to the Object Inspector. Runtime TeeChart libraries are included as
part of Delphi Professional and Enterprise versions. TChart is also integrated with
QuickReport with a custom TChart component on the QuickReport palette. Delphi
Enterprise includes a DecisionChart control in the Decision Cube page of the
Component palette.

Let's chart! – Prepare

Our task will be to create a simple Delphi form with a chart filled with values from a
database query. To follow along, create a Delphi form as follows:

1. Start a a new Delphi Application - one blank form is created by default.
2. Place the next set of components on the form: ADOConnection, ADOQuery,

DataSource, DBGrid and a DBChart.
3. Use the Object Inspector to connect ADOQuery with ADOConnection, DBGrid

with DataSource with ADOQuery.
4. Set up a link with our demo database (aboutdelphi.mdb) by using the

ConnectionString of the ADOConnection component.
5. Select the ADOQuery component and assign the next string to the SQL

property:
SELECT TOP 5 customer.Company, SUM(orders.itemstotal) AS umItems,
COUNT(orders.orderno) AS NumOrders FROM customer, orders WHERE
Customer.custno = orders.custno GROUP BY customer.Company ORDER
BY SUM(orders.itemstotal) DESC
This query uses two tables: orders and customer. Both tables were imported
from the (BDE/Paradox) DBDemos database to our demo (MS Access)
database back in the chapter 11. This query results in a recordset with only 5
records. The first field is the Company name, the second (SumItems) is a
sum of all the orders made by the company and the third field (NumOrders)
represents the number of orders that were made by the company. Note that
those two tables are linked in a master-detail relationship.

6. Create a persistent list of database fields. (To invoke the Fields Editor double
click the ADOQuery component. By default, the list of fields is empty. Click
Add to open a dialog box listing the fields retrieved by the query (Company,
NumOrders, SumItems). By default, all fields are selected. Select OK.) Even
though you don't need a persistent set of fields to work with a DBChart
component - we'll create it now. The reasons will be explained later.

7. Set ADOQuery.Active to True in the Object Inspector to see the resulting set
at design time.

The form should look something like:

Note that the DBChart is "empty". We have not connected the recordset with the
chart, yet.

 Let's chart! – Connect

In most cases, connecting a recordset with a DBChart and setting various properties
can be done using the specific Chart editor.

Using the fields of a recordset for the source, the chart becomes a dynamic display
that is updated as the recordset if modified. You have a wide variety of chart type
options to choose from and all of the parameters of the display can be controlled
within an application.

In general, you fill a chart with data designated in one or more series; each series
consists of categories and values. For example, to fill a chart with data about
customer orders, you could add a series that charts customer names as the
categories and order amounts as the values.

The Chart editor is a one stop shop for all Chart and Series specific parameters. Once
you have the DBChart component on a form, you should create one or more series.
To accomplish this, open the Chart Component Editor: select the component, right-
click it, and choose the Edit Chart menu item. Use the Chart tab to define all you
general chart parameters. Select the Series tab and you may choose from your list of

series to modify series specific features.

We'll add two chart series. One that presents the sum of all the orders per company
and second that will plot the total number of orders.

Chart tab

To add a data series press the Add button in the Series tab section of the Chart
page. Now simply choose the graph you want to add from Gallery - we'll use the
Horizontal Bar. Once we've added the Series to the Chart some random values are
displayed, in the Chart at design-time, to easily follow any changes you are making.
Note that a chart can have multiple series; if they are all of the same type they will

integrate better, as in the case of multiple bars. Now add a second series - again use
the Horizontal Bar.

Series tab

Selecting the Series tab (or double clicking the desired Series) allows you to edit
your Series. Select Series1. Select the DataSource tab. Select "Dataset" from the
drop down list. Select AdoQuery1 for the dataset. The next set of choices determine
the way how the data form the datasource will appear on the graph (different kinds
of charts have different properties and methods). The exact contents of the page will
change depending on the Series type you have chosen. The Bar property determines
what value each bar is representing - pick SumItems from the list. The Labels
property is used to draw labels for each of the bars in the graph. Note that Lables
drop down does not list the Company field from the recordset!

BUG! When working with ADO recordset the Chart Editor does not list fields of the
WideString type (for the XLabels property). This bug is present in TeeChart v4.xx
STANDARD that ships with Delphi 5 and Delphi 6. This is what I got as a reply from
the authors of the TeeChart: "Well, all Delphi versions use the same TeeChart
version (v4 STANDARD, I think D4-D6 and CB4-CB5 use the same version). We
discovered this bug only when Delphi 5 was released. We fixed it, but not for
TeeChart v4 STANDARD version (only for new v5 PRO version).
The good news is user can still connect ADOQuery to specific series at runtime (via
code):"

 Series1.DataSource := ADOQuery1;
 Series1.XLabelsSource := ADOQuery1WideStringField1.FieldName;
 Series1.XValues.ValueSource := ADOQuery1FloatField1.FieldName;
 Series1.YValues.ValueSource := ''; { no YValues }
 Series1.CheckDataSource;

I believe we fixed it in TeeChart v5.01 (v5.00) release...
Upgrading to the 5.01 release is not free.

Let's chart! – Code

Ok, let's see what we can do about this bug. It seems that all the properties of the
chart can be set with the Chart Editor except those related to recordset. We'll simply
(as suggested) set all from code. Add the next code to the form's OnCreate even
handler:

ADOQuery1.Close;
DBChart1.Legend.Visible:=False;
with DBChart1.SeriesList.Series[0] do begin
 DataSource := ADOQuery1;
 XLabelsSource := ADOQuery1Company.FieldName;
 XValues.ValueSource := ADOQuery1SumItems.FieldName;
 YValues.ValueSource := '';
 Marks.Style := smsXValue;
 CheckDataSource;
end; //with
with DBChart1.SeriesList.Series[1] do begin
 DataSource := ADOQuery1;
 XLabelsSource := '';
 XValues.ValueSource := ADOQuery1NumOrders.FieldName;
 YValues.ValueSource := '';
 CheckDataSource;
end; //with

ADOQuery1.Open;

Of course, I suggest you to browse through the Help system in order to find out
about the commands, properties and methods used in this code.

Minor adjustments and notes

If you run the application, you'll notice that the chart is actually three-dimensional -
set View3D to False - to display in two dimensions. You can prevent a legend from
appearing in your chart by setting its Legend.Visible to False. The default value for
Title is 'TDBChart' - change it as you like. Chart uses the current recordset order
(ORDER BY keyword in the SQL statement) to populate Series points. This order can
be overridden setting the Series values Order property.

That's it. It's not to easy, it's not to hard. Explore the Project's Code to find and learn
more.

Charting with Databases

In most modern database applications some kind of graphical data representation is
preferable or even required. For such purposes Delphi includes several data aware
components: DBImage, DBChart, DecisionChart, etc. The DBImage is an extension
to an Image component that displays a picture inside a BLOB field. Chapter 3 of this
database course discussed displaying images (BMP, JPEG, etc.) inside an Access
database with ADO and Delphi. The DBChart is a data aware graphic version of the
TChart component.

Our goal in this chapter is to introduce the TDBChart by showing you how to
integrate some basic charts into your Delphi ADO based application.

TeeChart

The DBChart component is a powerful tool for creating database charts and graphs.
It is not only powerful, but also complex. We wont be exploring all of its properties
and methods, so you'll have to experiment with it to discover all that it is capable of
and how it can best suite your needs. By using the DBChart with the TeeChart
charting engine you can quickly make graphs directly for the data in datasets without
requiring any code. TDBChart connects to any Delphi DataSource. ADO recordsets
are natively supported. No additional code is required - or just a little as you'll see.

The Chart editor will guide you through the steps to connect to your data - you don't
even need to go to the Object Inspector. Runtime TeeChart libraries are included as
part of Delphi Professional and Enterprise versions. TChart is also integrated with
QuickReport with a custom TChart component on the QuickReport palette. Delphi
Enterprise includes a DecisionChart control in the Decision Cube page of the
Component palette.

Let's chart! – Prepare

Our task will be to create a simple Delphi form with a chart filled with values from a
database query. To follow along, create a Delphi form as follows:

1. Start a a new Delphi Application - one blank form is created by default.
2. Place the next set of components on the form: ADOConnection, ADOQuery,

DataSource, DBGrid and a DBChart.
3. Use the Object Inspector to connect ADOQuery with ADOConnection, DBGrid

with DataSource with ADOQuery.
4. Set up a link with our demo database (aboutdelphi.mdb) by using the

ConnectionString of the ADOConnection component.
5. Select the ADOQuery component and assign the next string to the SQL

property:

SELECT TOP 5 customer.Company, SUM(orders.itemstotal) AS
SumItems, COUNT(orders.orderno) AS NumOrders FROM customer,
orders WHERE ustomer.custno = orders.custno GROUP BY
customer.Company ORDER BY SUM(orders.itemstotal) DESC
This query uses two tables: orders and customer. Both tables were imported
from the (BDE/Paradox) DBDemos database to our demo (MS Access)
database back in the chapter 11. This query results in a recordset with only 5
records. The first field is the Company name, the second (SumItems) is a
sum of all the orders made by the company and the third field (NumOrders)
represents the number of orders that were made by the company. Note that
those two tables are linked in a master-detail relationship.

6. Create a persistent list of database fields. (To invoke the Fields Editor double
click the ADOQuery component. By default, the list of fields is empty. Click
Add to open a dialog box listing the fields retrieved by the query (Company,
NumOrders, SumItems). By default, all fields are selected. Select OK.) Even
though you don't need a persistent set of fields to work with a DBChart
component - we'll create it now. The reasons will be explained later.

7. Set ADOQuery.Active to True in the Object Inspector to see the resulting set
at design time.

The form should look something like:

Note that the DBChart is "empty". We have not connected the recordset with the
chart, yet.

Let's chart! – Connect

In most cases, connecting a recordset with a DBChart and setting various properties
can be done using the specific Chart editor.

Using the fields of a recordset for the source, the chart becomes a dynamic display
that is updated as the recordset if modified. You have a wide variety of chart type
options to choose from and all of the parameters of the display can be controlled
within an application.

In general, you fill a chart with data designated in one or more series; each series
consists of categories and values. For example, to fill a chart with data about
customer orders, you could add a series that charts customer names as the
categories and order amounts as the values.

The Chart editor is a one stop shop for all Chart and Series specific parameters. Once
you have the DBChart component on a form, you should create one or more series.
To accomplish this, open the Chart Component Editor: select the component, right-
click it, and choose the Edit Chart menu item. Use the Chart tab to define all you
general chart parameters. Select the Series tab and you may choose from your list of
series to modify series specific features.

We'll add two chart series. One that presents the sum of all the orders per company
and second that will plot the total number of orders.

Chart tab

To add a data series press the Add button in the Series tab section of the Chart
page. Now simply choose the graph you want to add from Gallery - we'll use the
Horizontal Bar. Once we've added the Series to the Chart some random values are
displayed, in the Chart at design-time, to easily follow any changes you are making.
Note that a chart can have multiple series; if they are all of the same type they will
integrate better, as in the case of multiple bars. Now add a second series - again use
the Horizontal Bar.

Series tab

Selecting the Series tab (or double clicking the desired Series) allows you to edit
your Series. Select Series1. Select the DataSource tab. Select "Dataset" from the
drop down list. Select AdoQuery1 for the dataset. The next set of choices determine
the way how the data form the datasource will appear on the graph (different kinds
of charts have different properties and methods). The exact contents of the page will
change depending on the Series type you have chosen. The Bar property determines
what value each bar is representing - pick SumItems from the list. The Labels
property is used to draw labels for each of the bars in the graph. Note that Lables
drop down does not list the Company field from the recordset!

BUG! When working with ADO recordset the Chart Editor does not list fields of the
WideString type (for the XLabels property). This bug is present in TeeChart v4.xx
STANDARD that ships with Delphi 5 and Delphi 6. This is what I got as a reply from
the authors of the TeeChart: "Well, all Delphi versions use the same TeeChart
version (v4 STANDARD, I think D4-D6 and CB4-CB5 use the same version). We
discovered this bug only when Delphi 5 was released. We fixed it, but not for
TeeChart v4 STANDARD version (only for new v5 PRO version).
The good news is user can still connect ADOQuery to specific series at runtime (via
code):"

 Series1.DataSource := ADOQuery1;
 Series1.XLabelsSource := ADOQuery1WideStringField1.FieldName;
 Series1.XValues.ValueSource := ADOQuery1FloatField1.FieldName;
 Series1.YValues.ValueSource := ''; { no YValues }
 Series1.CheckDataSource;

I believe we fixed it in TeeChart v5.01 (v5.00) release... Upgrading to the 5.01
release is not free.

Let's chart! – Code

Ok, let's see what we can do about this bug. It seems that all the properties of the
chart can be set with the Chart Editor except those related to recordset. We'll simply
(as suggested) set all from code. Add the next code to the form's OnCreate even
handler:

ADOQuery1.Close;
DBChart1.Legend.Visible:=False;
with DBChart1.SeriesList.Series[0] do begin
 DataSource := ADOQuery1;
 XLabelsSource := ADOQuery1Company.FieldName;
 XValues.ValueSource := ADOQuery1SumItems.FieldName;

 YValues.ValueSource := '';
 Marks.Style := smsXValue;
 CheckDataSource;
end; //with
with DBChart1.SeriesList.Series[1] do begin
 DataSource := ADOQuery1;
 XLabelsSource := '';
 XValues.ValueSource := ADOQuery1NumOrders.FieldName;
 YValues.ValueSource := '';
 CheckDataSource;
end; //with

ADOQuery1.Open;

Of course, I suggest you to browse through the Help system in order to find out
about the commands, properties and methods used in this code.

Minor adjustments and notes

If you run the application, you'll notice that the chart is actually three-dimensional -
set View3D to False - to display in two dimensions. You can prevent a legend from
appearing in your chart by setting its Legend.Visible to False. The default value for
Title is 'TDBChart' - change it as you like. Chart uses the current recordset order
(ORDER BY keyword in the SQL statement) to populate Series points. This order can
be overridden setting the Series values Order property.

That's it. It's not to easy, it's not to hard. Explore the Project's Code to find and learn
more

Lookup!

Back in the master-detail relationships chapter, of this course, we've seen that in
most cases one database table is related to the data in one or more other tables.

Consider the next example. In our sample aboutdelphi.mdb database, Applications
table lists Delphi applications uploaded by the visitors to this site. Among other
fields, the Author and Type fields are linked with the corresponding fields in the
Authors and Types tables. Only values from the AuthorName field in the Authors
table can appear in the Author field of the Applications table. The same rule is
applied to the TypeName field (Types table) and the Type field (Applications table).
Another situation: consider an application data entry form whose fields are
connected to the Applications table. Let's say that this table has only one information
related to the author of the application, an AuthorNo field corresponding to authors
unique number. The Authors table, on the other hand, contains an AuthorNo field
corresponding to authors UN, and also contains additional information, such as the
authors name, email and a web page. It would be convenient if the data entry form
enabled a user to select the author by its name (and email) instead by its UN.

Lookup!
If you have a Delphi form with data controls designed to allow editing the
Applications table, you have to make sure that only TypeName values from the
Types table can be applied to the Types field of the Application table. You also have
to make sure that only AuthorName values from the Authors table can be applied to
the Author field of the Application table. The best way to make this sure is to provide
users with a string list to select the values from rather than having them enter
values manually.

Both TDBLookupListBox and TDBLookupComboBox are data-aware controls that
enable us to choose a value from another table or from a predefined list of values.
This pair of components are so similar that it makes sense to discuss only one of
them. Both components are designed to list items from either a dataset or from a
secondary datasource. We'll be looking at the TDBLookupComboBox component.

In this chapter, we'll see how to use lookup fields in Delphi to achieve
faster, better and safer data editing. We'll also see how to create a new field
for a dataset and discuss some of the key lookup properties. Plus, take a
look at how to place a combo box inside a DBGrid.

There are three ways you can set a lookup field in Delphi.

1. If you have a data form where all editings are done in a DBGrid, the best is to
create a new (lookup) field for the dataset.

2. If a form hosts a set of data controls (DBEdit, DBComboBox, etc.), it makes
sense to just use DBLookupComboBox without creating a new field.

3. The last one is to use columns of a DBGrid with its PickList property, again
without creating a new field. This approach is not a true lookup approach but
you'll see that it can act as one. The PickList list values that the user can
select for the field value - just like a standard DBComboBox - but inside a
DBGrid. We'll make it to list values from another dataset, thus defining sa
lookup.

We'll discuss each of them, but we first need to build a data entry form.

Creating a data entry form

Creating a data editing form by hand is not to much complicated, as we already
know. When developing database applications with Delphi (and ADO), most of the
work is done inside the IDE by simply connecting various components together, thus
having to write no code. A typical data browsing/editing form presents a database
table inside a DBGrid. Another way is to add several data aware controls to a form
and link them to the data source. We'll place both a DBGrid and several data aware
controls.

Have a new Delphi project with an empty form, then add the next set of
components: one AdoConnection, one DataSource and two ADOTables.
Use the Object Inspector and connect all those components in the following way:
First set the name of the ADOConnection component to be ADOConnection. Use
ConnectionString property to link to our aboutdelphi.mdb database (LoginPrompt =
False). Set ADOTable1.Name = ApplicationTable, ADOTable2.Name = AuthorsTable.
Set DataSource1.Name = ApplicationsSource. Set the Connection property of all
ADOTable components to point to ADOConnection component. Set
ApplicationSource.DataSet = ApplicationsTable. Finally, set ApplicationTable.Table =
Applications, AuthorsTable.Table = Authors. Finally, add a DBGrid (DBGrid1) to a
form and Connect it with ApplicationsSource.

Here is a list of relevant values, as can be seen in the dfm file for a form.

 object ApplicationsTable: TADOTable
 Connection = ADOConnection
 TableName = 'Applications'
 end
 object AuthorsTable: TADOTable
 Connection = ADOConnection
 TableName = 'Authors'
 end
 object ApplicationsSource: TDataSource
 DataSet = ApplicationsTable
 end
 object DBGrid1: TDBGrid
 DataSource = ApplicationsSource
 end

Double click the Applications table (Fields editor) and create a persistent set of field
objects - pick Name, Description, Type, Size and Author.

All set up (at least for now). It's time to see the first approach to lookup fields.

New ... lookup field
To crete a new field object you have to invoke the Fields editor for a dataset. Double
click the ApplicationsTable and right click it to have a pop up menu displayed. Pick
"New field..."

The idea is to set the value for the Author field by picking it's email. I know this does
not make much sense, but it will bring the lookup idea closer. In the New field form
fill the boxes as on the picture below. We create a new AEmail field for the
ApplicationTable dataset. As you can see from the picture, there are few very
important properties you have to understand prior to working with lookup fields.

.Field Name is the name of the lookup field. Set it to AEmail.

.Dataset identifies the dataset that contains lookup values (Authors).

.KeyFields is a field in the Applications dataset we are setting through a lookup.

.Lookup Keys is a field in the lookup dataset (Authors) to match against the
KeyFields.
.ResultField is a field in the lookup dataset to return as the value of the lookup field
you are creating.

That's it. No code required. Start your project (or set Active property for both tables
to True) and you can see that DBGrid, in the AName fields column, has a combo box
with author emails. As you pick an email the corresponding author field changes. We
are looking up an authors email to change the author. Note that AEMail is a read-
only field.

Note: the combo box in the cell of a DBGrid has nothing with the PickList property of
Grid's column. This will be explained later in this chapter.

Lookup with DBLookupComboBox

As stated above, when your data entry form is made of more data controls (DBEdit,
DBComboBox, etc.) it makes sense to just use DBLookupComboBox without creating
a new field.

For the start, use dragging from the Fields editor to add data controls to a form.
Drag Name, Author, Type and Description. This will add 4 DBEdit components and 4
Label components. At this point, remove the DBEdit connected with the Author field
of the Applications table and replace it with a DBLookupComboBox. Name it
ApplicationsAuthorLookup. We'll also need another DataSource component. Drop one
on the form, change the name to AuthorsSource and link it to AuthorsTable.
Finally, we need to set the lookup combo box to work properly. Use Object Inspector
and set the following:

 object ApplicationsAuthorLookup: TDBLookupComboBox
 DataSource = ApplicationsSource
 DataField = 'Author'
 ListSource = AuthorsSource
 KeyField = 'authorname'
 ListField = 'authorname;email'
end

These properties are key to the lookup connection:

. DataSource and DataField determine the main connection. The DatField is a field
into which we insert the looked-up values.

.ListSource is the source of the lookup dataset.

. KeyField identifies the field in the ListSource that must match the value of the
DataField field.

. ListFields is the field (one or more) of the lookup dataset that are actually displayed
in the combo. ListField can show more than one field. Multiple field names should be
separated by semicolons. You have to set large enough value for the
DropDownWidth (of a ComboBox) to really see multiple columns of data.

Just for practice, replace the Type's field DBEdit with DBLookComboBox and set a
lookup relation with the Types table. Note that you need one more DataSource and
one more ADO Table pointing to the Types table. Set the DataSource and DataField
properties to the dataset and field where the selection will be written (Applications;
Type). Set the ListSource, KeyField and ListField properties to the lookup field from
which the list should be populated (Types; TypeName, TypeName).

Graphically, connections between tables, sources and ADOConnections can now be
presented as:

That's it. Again, no code required. When the user selects an item from the combo
box, an appropriate value of the KeyField field changes the value of the DataField. At
run time, the form looks like:

Note 1: When you want to display more than one field in a LookupComboBox, as in
the example above, you have to make sure that all columns are visible. This is done
by setting the DropDownWidth property. However, you'll see that initially you have
to set this to a very large value which results in dropped list being too wide in most
cases. One workaround is to set the DisplayWidth of a particular Field shown in a
drop down list. The next code snippet, placed inside the OnCreate event for the form,
ensures that both author name and it's email are displayed inside the drop down list.
 AuthorsTable.FieldByName('authorname').DisplayWidth:=15;
 AuthorsTable.FieldByName('email').DisplayWidth:=20;

Note 2 : If you drag AEmail field from a Field Editor to a form, Delphi will connect it
with a DBLookupComboBox automatically. Of course, key lookup properties will look
different since we don't need another data source for this link to work - lookup field
is already defined "inside" the ApplicationsTable/Source.

Lookup inside a PickList of a DBGrid Column

The last approach to having a lookup values displayed inside a DBGrid is to use the
PickList property of a DBGrid Column object. You'll usually add Columns to a DBGird
when you want to define how a column appears and how the data in the column is
displayed. A customized grid enables you to configure multiple columns to present
different views of the same dataset (different column orders, different field choices,
and different column colors and fonts, for example).

I will not discuss this topic briefly here. Let's just see what are the steps to add
columns to a DBGrid.

1. Right-click the DBGgrid component. This pops up the Columns Editor.
2. Right-click the Columns Editor to invoke the context menu and choose Add All

Fields. This creates one column for each field in a dataset and connects them
- the FieldName property determines the connection.

While you have the Columns Editor displayed, see that each column has a PickList
property. We'll use this String List to fill a list of lookup values. Take a look at the

AEMail column, its FieldName points to a lookup field - therefore displaying a combo
box inside a DBGrid as we saw at the beginning of this article. However its PickList is
empty. What I want to show you here is how to fill that String List with values from
another dataset at run time - without creating a new lookup field. In general, a pick
list column looks and works like a lookup list, except that the drop-down list is
populated with the list of values in the column's PickList property instead of from a
lookup table. The reason to show how to use PickList to mimic the lookup list is just
to show that the same task can be done in several ways when you have a great toll
like Delphi.

What we want to do is to fill a PickList with the values from another dataset at run
time - this time using Pascal code. We'll use the Form's OnCreate event.

procedure TForm1.FormCreate(Sender: TObject);
var AuthorsList:TStringList;
 i:integer;
begin
 AuthorsList:=TStringList.Create;
 try
 AuthorsTable.First;
 AuthorsTable.DisableControls;
 while not AuthorsTable.EOF do begin
 AuthorsList.Add(
 AuthorsTable.FieldByName(
 'authorname').AsString);
 AuthorsTable.Next;
 end; //while
 finally
 //place the list it the correct column
 for i:=0 to DBGrid1.Columns.Count-1 do begin
 if DBGrid1.Columns[i].FieldName = 'Author'
 then begin
 DBGrid1.Columns[i].PickList:=AuthorsList;
 Break;
 end;//if
 end; //for
 AuthorsTable.EnableControls;
 AuthorsList.Free;
 end; //try
end;

The code simply fills the AuthorsList with the values of AuthorName, by iterating
through the Authors table. It then assigns the contents of the AuthorsList to the
PickList whose FiledName point to the Author field. Since we can change the order of
columns at design and run time you have to make sure that the correct PickList get's
the values.

That's all for this chapter. Make sure you download code for this project.

Compacting an Access database with
ADO and Delphi

Why compacting

While you add and delete records from database tables, your database becomes
more and more fragmented and uses disk space inefficiently. Compacting a database
makes a copy of the database, rearranging how the database file is stored on disk.
The compacted database is usually smaller and often runs faster.
This chapter of the free database course for Delphi beginners shows how to
use JRO from Delphi in order to compact an Access database from code.

JRO TLB

ADO does not directly expose a method for compacting
a database. By using Jet and Replication Objects (JRO),
you can compact databases, refresh data from the
cache, and create and maintain replicated databases.
The JRO exposes two objects, the JetEngine object and
the Replica object. The Replica object is used to
manipulate replicated databases. We will not deal with
database replications in this chapter. By using the Jet
Engine object we can programmatically control
compacting and refreshing data from the memory
cache.

As with ADOX, the JRO library must be imported in
Delphi, since it is not a part of the ADOExpress (or dbGo
in D6). The description of the ADOX library is "Microsoft

Jet and Replication Objects 2.x Library (Version 2.x)". The JRO library file name is
MSJRO.dll. We've already seen the steps needed to import a type library in Delphi
(ADOX). The same process should be repeated in this case. To import JRO in Delphi
you need to open a new project and Select Project | Import Type Library. In the
dialog box choose "Microsoft Jet and Replication Objects 2.x Library (Version 2.x)".
Note that it will add two new classes, the TReplica and TJetEngine. Press Install
button to add JRO to a package or press Create unit to just create a single interface
unit. If you click Install, two new icons will appear on the ActiveX tab (if you have
left the default Palette page on the Dialog).

Note: Delphi 6 users will not succeed in importing JRO type library. If you have
Delphi 6, while trying to install the library in a package, an error will pop up
indicating that ActiveConnection in the JRO_TLB file doesn't exist (along with some
other errors). The problem lies in Delphi 6 TLB importer. There are two options to
overcome the problem: 1. Use Delphi 5 to import JRO an then install it in Delphi 6. 2.
Manually declare the missing ActiveConnection property and change property
declarations to make them writeable.

Compact Delphi Project

It's time to see some code. Create a new Delphi application with one form. Add two
Edit controls and a Button. From the ActiveX component page pick JetEngine. The
first Edit should be renamed to edSource, the second one to edDest. The button
should be renamed to btnComapct. The JetEngine should be renamed to JE. It should
all look like:

The TJetEngine class has a CompactDatabase method. The method takes two
parameters: the ADO connection string for the source as well for the destination
database. CompactDatabase method compacts a database and gives you the option
of changing its version, password, collating order and encryption.
Encrypting a database makes it indecipherable by a utility program or word
processor. Encrypted databases can still be opened by Access or through Delphi
code. The proper way to protect a database is to set a password for it. Collation
order is used for string comparison in the database. Changing a database version
gives you the way to "upgrade" it.

In our form, the edSource is used to specify the database we want to compact. The
edDest specifies the destination database. Within the connection strings, you specify
various connection properties to determine how the source database is opened and
how the destination database is compacted. At a minimum, you must use the Data
Source property in each connection string to specify the path and name of the
database.
When you use the CompactDatabase method, you can't save the compacted
database to the same name as the original database. CompactDatabase also requires
that the destination database does not exist.

The next code (btnCompact OnClick event handler) is an example of the
CompactDatabase method:

procedure TForm1.btnCompactClick(Sender: TObject);
var
 dbSrc : WideString;
 dbDest : WideString;
const
 SProvider = 'Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=';
begin
 dbSrc := SProvider + edSource.Text;

 dbDest := SProvider + edDest.Text;

 if FileExists(edDest.Text) then
 DeleteFile(edDest.Text);

 JE.CompactDatabase(dbSrc,dbDest);
end;

Note that the above code presumes an Access 2000 database. Microsoft Jet OLEDB
4.0 is the default data engine for Access 2000.

In many cases you'll want to have the same database name after the compact
operation. Since edSource and edDest can't be the same your code should replace
the original file with the compacted version. The next function takes only one
parameter - the name of the database you want to compact:

function DatabaseCompact
 (const sdbName: WideString) : boolean;
var
 JE : TJetEngine; //Jet Engine
 sdbTemp : WideString; //TEMP database
 sdbTempConn : WideString; //Connection string
const
 SProvider = 'Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=';
begin
 Result:=False;
 sdbTemp := ExtractFileDir(sdbName) +
 'TEMP' +
 ExtractFileName(sdbName);
 sdbTempConn := SProvider + sdbtemp;
 if FileExists(sdbTemp) then
 DeleteFile(sdbTemp);
 JE:= TJetEngine.Create(Application);
 try
 try
 JE.CompactDatabase(SProvider + sdbName, sdbTempConn);
 DeleteFile(sdbName);
 RenameFile(sdbTemp, sdbName);
 except
 on E:Exception do
 ShowMessage(E.Message);
 end;
 finally
 JE.FreeOnRelease;
 Result:=True;
 end;
end;

The DatabaseCompact receives a sdbName string parameter with the full name of
the database you want to compact. The function returns True if compact is successful
False otherwise. The sdbName is compacted in sdbTemp, the sdbName is then
deleted and sdbTemp renamed to sdbName. The DatabaseCompact could be called
as:

 DatabaseCompact('C:\ADP\aboutdelphi.mdb');

The DatabaseCompact function is ideal to be called from within your Delphi ADO
application as an external application. It could also be written as a console mode
application that takes one command line parameter (or more) since it requires no
GUI.

Database reports with Delphi and
ADO

In programming (database) terminology reports are printed documents containing
data from a database. To generate reports with Delphi we generally use special
reporting tools. In most cases such tools are available from third-party developers.
One set of components, QuickReport from QuSoft, comes with Delphi as a set of VCL
components.

In this chapter of the free database course, you'll see how to use
QuickReport set of components to create database reports with Delphi; how
to produce database output with text, images, charts and memos - quickly
and easily.

QuickReport is designed to let us produce database reports as well as reports based
on text files and string lists. QuickReport lets us create print previews where the user
can check the result of a printout without wasting paper, and export data to other
file formats, such as plain ASCII, comma separated values (CSV), MS Excel XLS, Rich
Text RTF and HTML. By using the components on the QReport page of the
Component palette, you can visually build banded reports to present and summarize
the information in your database tables and queries. You can add summaries to
group headers or footers to analyze the data based on grouping criteria.

Report Types

Among many different types of database reports, three are most common:

• List reports look like a table (or a DBGrid), each row containg data from a row in a
recordset.
• Label reports present data inside rectangular areas. This type of report is mostly
used when printing envelopes.
• Master-detail reports are used when report contains data from two linked
recordsets. In general, several detail records follow the appropriate master record.
This type of report requires parent-child relationship between two recordsets.

The simplest way to create a report is to use the QuickReport Wizard located on the
Forms page (Delphi 5) of the New Items dialog. We'll pick the QuickReport List - this
creates a new form with the main reporting component TQuickRep. This component
acts as a container for several TQrBand components containing TQrLabels. There is
also a TTable component on that form.

We are not going into details about QuickReport here, since there is a
comprehensive tutorial on using the QuickReport set of components with
Delphi available on this site.

Quick ADO Delphi report

Unfortunately the Wizard crates a reporting template for BDE based database
application, by placing the TTable component on a form along with DB and DBTables
units in the uses clause. To prepare the form for our aboutdelphi.mdb MS Access
database and ADO you need to delete the TTable from the form as well as the DB
and DBTables units from the forms uses clause.

We'll now create a simple list report containing data from the Applications table. First
make sure the newly created form is the default for the project (Project | Options |
Forms). Second add the TADOTable component on a form, set it's Connection
property to point to the aboutdelphi.mdb database (this time were not going to use

ADOConnection) and set the Table property to Application. Third, remove the
TitleBand1 (TQrBand), PageFooterBand1 (TQrBand) and the ColumnHeaderBand1
(TQrBand). Also, remove the QRLabel2 from the DetailBand1. This leaves us with
only ADOTable1, QuickRep1 and DetailBand1. To link QuickReport1 with ADOTable1
set it's Dataset property to point to ADOTable1.

The next step is to place several TQRDBText components on DetailBand1, one for
each field we want to print, and set their Dataset property to ADOTable1. Add three
QRDBText components, let them point to Author, Type and Description fields of the
Applications table.

To see the report at design time set ADOTable1.Active to True, right click the
QuickRep1 component and select Preview. This is something similar to what you
should see:

To show this preview window at run time, we need to call the Preview method of the
TQuickRep component.

procedure TQRListForm.FormCreate(Sender: TObject);
begin
 QRListForm.QuickRep1.Preview;
end;

Note that when previewing the report, Delphi (QuickReport) uses the standard
QuickReport preview form. If you want to change the appearance or behaviour of
this form you can create your own preview form with the TQRPreview component.

To send this report to a printer use the Print method.

Charts and Images

In many cases you'll need to create reports that consist of other elements like charts
or images. Creating a report with chart is simple. Just pick the TQRChart component
and use it as explained it the Charting with Databases chapter. To show a picture
stored inside an Access database you should use the TQRImage (not TQRDBImage)
component. Since there are some "problems" with displaying pictures inside Access
you should consider the Pictures inside a database chapter.

Data Modules

When developing simple database applications (with one or two forms) it is quite
usual to place all the data-access components on a form with data-aware
components. But if you plan on reusing groups of database and system objects, or if
you want to isolate the parts of your application that handle database connectivity
and business rules, then Delphi's Data Modules provide a convenient organizational
tool.

This chapter of the free database course for Delphi beginners shows how to
use Data Modules in Delphi (ADO) database development to partition an
application into user interface, application logic and data.

Data modules provide a formal mechanism for collecting and encapsulating DataSet
and DataSource objects, their attributes, events and code (business rules) in one
central location. Data modules can contain only nonvisual components and are
generally used in database and Web development. They provide Delphi developers a
visual way to manipulate and code non-visual components of an application.

Generally, a TDataModule class is used for some of the purposes:

Sharing data access components and code

Use a TDataModule to provide a location for centralized handling of nonvisual
components. Typically these are data access components (TADOConnection,
TADOTable, TADOQuery, TADOCommand, etc), but they can also be other nonvisual
components. This is convenient when an application has multiple forms that share
the same data access provider - if your application operates on only one database
file (one mdb) then you'll need only one TADOConnection component for all the
dataset components.

Design time visual organization

At design time, the Diagram page in the Code editor provides visual tools for setting
up logical relationships among the components on the data module. You can drag a
property connector from one component to another to hook them up. Drag a master-
detail connector between tables to join them. You reach the persistent datasets fields
much faster than when using the fields editor.

Business rules centralization

In the unit file for the data module a Delphi developer may also place any business
rules that are to be applied to the application. These are the controls that prevent
invalid data begin entered into a database and ensuring that valid data is maintained
within the database.

Code maintenance

Data modules make code maintenance easier since you only have to change code in
one place instead of in every form - especially when having common db functions
located in a data module or if we create an application with several forms serving the
same database tables and/or queries.

New ... Data Module
To create a data module at design time, choose File | New | Data Module. At design
time, a data module looks like a standard Delphi form with a white background and
no alignment grid. At run time data module exists only in memory. DataModule has
only two properties, Name and Tag, and two events, OnCreate and OnDestroy. Use
the Name property when referring to module's objects from other units.

DataModules are not limited to data access components, they can also contain other
nonvisual components, such as TMainMenu, TTimer, TSaveDialog or TPopUpMenu).

You place all the components in the right pane ("Components") of data module's
window. The tree view on the left is for navigation purposes.

Note: in Delphi versions prior to version 6, the TDataModule class was defined in the
Forms unit. Delphi 6 moves TDataModule class to the Classes unit to allow smaller
GUI-less applications to be written and to separate OS independent classes. In
Delphi 6, the Tree diagram and the Data Diagram are separated. The Diagram page
on the Code editor provides visual tools for setting relationships among non-visual
(and visual) components.

When you select the Data Diagram page (for the first time), you are presented with
an empty container, in which you can drag any object from the Tree View and then
link those objects. Relationships include parent/child, datasource/dataset and similar.
For example, after moving a TADOTable and TADOConnection to the Diagram view,
you select the Property connector icon, click the ADOTable and drag to the
ADOConnection. The connection will be made: TADOTable.Connection property will
point to ADOConnection component - as can be seen in the Object Inspector.

To make the data module available to another unit in the application, select that
unit, then choose File|Use Unit to add the data module to the uses clause for the
unit. If you have several forms that refer to the same data module, make sure the
data module is created before it is referenced from those form - or you'll get an
access violation error.

When refering to a dataset like ADOTable1 (on a data module, named uDM) from
some data browsing form (let's say form1) your code will look like:

// some procedure in form1
 uDM.ADOTable1.Open;

Handling database errors
One of the most important elements of database programming is handling database
errors. Any robust (database) application must contain error trapping mechanism to
prevent an inexperienced (or careless) user to, for example, input a bad value into a

data field or delete a record that should not be deleted. Another error might pop up
while trying to connect to a database that does not exist.

Our goal in this chapter of the free database course is to introduce error
handling techniques in Delphi ADO database application. You can learn about
errors and exceptions (general, not database specific) in the article entitled Errors
and Exceptions.

There are several approaches we can use to handle database related errors. One
approach is to let Delphi show the exception message, but it is much more user
friendly to try to correct the error and show some more details on the error:

• Global exception handling allows you to create a single procedure to handle any
exceptions that may occur in a program. You write a code for the OnException event
of the global Application object by using the ApplicationEvents component. This code
is then used to handle not just database related errors but any error that may
appear while the application is running.

• Handling dataset's specific events is an another approach. Events like
OnPostError, OnEditError, OnInsertError and similar occur when an attempt to post a
record, edit or insert fails. All those events are dataset specific.
• Surrounding risky database operations with try-except and try-finally blocks,
such as a call to the Execute statement of the ADOQuery object is another way to
trap a possible exception.

EDatabaseError, EADOError, OLE exceptions

When developing Delphi ADO based database solutions you should be aware of the
several types of exceptions. In general, information that describes the conditions of a
database error can be obtained for use by an application through the use of an
EDatabaseError exception. The more ADO specific exception object is the ADOError
object raised when an application detects errors generated by ADO datasets.
Finally, since ADO is based on OLE, OLE exceptions (EOLEError, EOLEException and
EOLESysError) might occur, in a Delphi application, during an attempt to invoke a
method or property of an OLE automation object - ADO Express (dbGO in D6)
components that implement ADO in Delphi are built as wrappers around the ADO
objects. When we use ADO extensions like ADOX or JRO libraries OLE exceptions
may occur, too.

Error information and management

All the types of exceptions that may occur in a Delphi application are deriveed from
the Exception class, which provides a set of properties and methods that can be used
to handle error conditions in a graceful manner.

In situations where an ADO dataset is used without any data aware components
(reporting, looping through a recordset, etc) we can use exception handling blocks:

 try
 ADOTable.Open;
 except

 on E:Exception do
 begin
 MessageDlg('Error Opening Table ' + E.ClassName,
 mtError, [mbOK], 0);
 LogError(E);
 end;
 end;

In the except block, you use a series of on/do statements to check for different
exceptions. When using the Exception for E your code will handle all exceptions that
occur. In the MessageDlg we display the error message and the exception class
(E.ClassName). For example, if you try to open a table that is exclusively opened by
some other user (Table design in MS Access) you'll get an EOLEError.

When handling dataset's specific events (for example OnPostError for ADOTable
dataset) we write code for the appropriate events.

procedure TForm1.ADOTablePostError(
 DataSet: TDataSet;
 E: EDatabaseError;
 var Action: TDataAction);
begin
 LogError (E); //custom error loggin procedure
 {
 Show some message to the user
 about the failure of the the post operation..
 }
 Action := daAbort;
end;

The Action parameter indicates how an application should respond to a database
error condition. If you are able to determine the cause of the error and fix it, you use
the daRetry action - Delphi will try to re-execute the Post method. The daAbort
action should be specified when you handle the error (show some meaningful
message) and there is no need for the exception to "go" the the global exception
handler (Application.OnException). The daFial is the default action.

If your application provides the event handler for the OnException event of the
ApplicationEvents component, all the exceptions can be handled in one place:

procedure TForm1.ApplicationEventsException
 (Sender: TObject; E: Exception);
begin
 LogError (E); //custom error logging procedure
end;

The message property (of the Exception object) can be used to show a message on
the screen, save the message in some log file, or combine some specific message
information with our own custom message.

Error logging procedure

In most situations it is a good idea to have some error logging procedure that writes
every error to a text file. The LogError procedure below uses the TStringList object to
store information of the current error in a file named error.log (in the application
folder).

procedure LogError(E:Exception);
var sFileName : string;
 errLogList : TStringList;
begin
 sFileName := ExtractFilePath(Application.EXEName) + 'error.log';

 errLogList := TStringList.Create;
 try
 if FileExists(sFileName) then
 errLogList.LoadFromFile(sFileName);
 with errLogList do
 begin
 Add('Error Time Stamp: ' +
 FormatDateTime('hh:nn am/pm', Now) +
 ' on ' +
 FormatDateTime('mm/dd/yy', Now));
 Add('Error Class: ' + E.ClassName);
 Add('Error Message: ' + E.Message);
 SaveToFile(sFileName);
 end; //with
 finally
 errLogList.Free;
 end;
end;

When you open the error.log file with some text editor, you'll get something like:

...
Error Time Stamp: 02:49 pm on 10.30.01
Error Class: EOleException
Error Message: Table 'djelatnici' is exclusively locked by user...
...

ADO Errors collection

Any operation involving ADOExpress components can generate one or more errors.
As each error occurs, one or more Error objects are placed in the Errors collection of
the ADOConnection component. You must note that error objects represent
individual errors from the provider and are not ADO-specific, this means that the
"same" error will be reported differently by MS Access and differently by MS SQL
Server. When an error occurs, the provider is responsible for passing an error text to
ADO. In Delphi, using the Errors Collection object directly is not recommended unless
you are familiar with connection object operations.

The Error property of TADOConnection component represents the Errors object and
has several properties. The Description property contains the text of the error. The

Number property contains the long value of the error constant. The Count property
indicates the number of Error objects currently stored in the collection. To get the
Description of the last error in the Errors object you can use the next statement:
ADOConnection1.Errors.Item[ADOConnection1.Errors.Count-1].Description;

From ADO Query to HTML
In this chapter, of the free database Delphi ADO course, you are going to see how to
easily create HTML pages based on database information. In particular, you'll see
how to open a query from an MS Access database with Delphi and loop through the
contents generating an HTML page for each row in a recordset.

Start a new application - this creates an empty Delphi form.

Add the following data components:

• TAdoConnection (name: AdoConnection1)
• TAdoQuery (name: AdoQuery1)
• TDataSource (name: DataSource1)
• TDBGrid (name: DBGrid1)

To display the generated HTML you'll need several more components to be dropped
on a form.

• TWebBrowser (name: WebBrowser1) - used to display the generated HTML.
• TMemo (name: Memo1) - used to display the text of the generate HTML.
• TButton (name: Button1) - used to open a query, create the HTML code and

display it.

This is how your form should look at design time (in the middle of the form there is a
WebBrowser component)

The first thing you need to do when working with a database in Delphi and ADO, is to
set relations between data access components then open a database connection.
Just to test your knowledge we'll link all DB related components from code (no need

to use the Object Inspector). You place the code in the OnCreate event for the form
(plus some extra code to pre-set other components):

procedure TForm1.FormCreate(Sender: TObject);
var ConStr: widestring;
begin
 ConStr := 'Provider=Microsoft.Jet.OLEDB.4.0;'+
 'Data Source=C:\!gajba\About\aboutdelphi.mdb;'+
 'Persist Security Info=False';

 DBGrid1.DataSource := DataSource1;
 DataSource1.DataSet := ADOQuery1;
 ADOQuery1.Connection := ADOConnection1;
 ADOConnection1.ConnectionString := ConStr;
 ADOConnection1.LoginPrompt:=False;
 Edit1.Text:='SELECT * FROM [tablename]';
 Memo1.Text:='';
end;

The next step is to get the recordset by opening a query so we can get access to the
data. The query text is in the Edit1 components Text property. The code should be
placed in the OnClick event of a Button1 (as described below).

 ADOQuery1.SQL.Text:=Edit1.Text;
 ADOQuery1.Open;

HTML code

HTML is the most widely spread format for content on the Web. If your
knowledge on HTML is low, please consider visiting About's HTML site.
Here's a really quick info on html: in general, a HTML page consists of
text, plain ASCII text. An HTML file can contain many, so called, tags
which determine the style of the font, formating of the paragraph, ...
You use special tags to create a table with rows and columns.

After we've opened up a recordset, we loop through the records creating a table for
each entry. Prior to generating a HTML table, we create the HTML header, title and
body. We first loop through the field names to create a table header, then loop
through the recordset to create and fill table rows.

procedure TForm1.Button1Click(Sender: TObject);
var
 shtml : widestring;
 htmlfile : TextFile;
 i : integer;
 AvailableFields: set of TFieldType;
begin
AvailableFields:=[ftWideString, ftDate, ftFloat];
//open query

ADOQuery1.SQL.Text:=Edit1.Text;
ADOQuery1.Open;

// --> create a html page

//html header
 shtml:= '<html> <head> <title>';
 shtml:= shtml + Edit1.Text;
 shtml:= shtml + '</title></head>' + #13#10;
 shtml:= shtml + '<body>' + #13#10;
 shtml:= shtml + 'Table created from query: <i>'
 + Edit1.Text + '</i>' + #13#10;

//table header
 shtml:= shtml + '<table border="1" width="100%">' + #13#10;
 shtml:= shtml + '<tr>' + #13#10;
 for i:=0 to AdoQuery1.FieldCount-1 do
 begin
 if ADOQuery1.Fields[i].DataType in AvailableFields then
 begin
 shtml:= shtml + '<td>';
 shtml:= shtml +
 '' +
 ADOQuery1.Fields[i].DisplayName +
 '';
 shtml:= shtml + '</td>' + #13#10;
 end;
 end;{for}
 shtml:= shtml + '</tr>' + #13#10;

//table body
 while not adoquery1.Eof do
 begin
 shtml:= shtml + '<tr>' + #13#10;
 for i:=0 to AdoQuery1.FieldCount-1 do
 begin
 if ADOQuery1.Fields[i].DataType in AvailableFields then
 begin
 shtml:= shtml + '<td>';
 shtml:= shtml + ADOQuery1.Fields[i].AsString;
 shtml:= shtml + '</td>' + #13#10;
 end;
 end;{for}
 shtml:= shtml + '</tr>' + #13#10;
 ADOQuery1.Next;
 end;{while}
 shtml:= shtml + '</table>' + #13#10;

 shtml:= shtml + '</body></html>';
Note: for the sake of simplicity, we'll allow only string, number and date fields to be
converted and inserted in a html table. The AvailableFields variable is a set of
TFieldTypes declared as: AvailableFields: set of TFieldType; in the VAR
section and assigned like: AvailableFields:=[ftWideString, ftDate, ftFloat];
Once you have the shtml string variable filled with the HTML, we simply show it in
the Memo, save the html string to the disk (in the text file that has the applications

name, extension is set to htm), and finally navigate to the saved file in a
WebBrowser.
// --> assign to memo
 Memo1.Text := shtml;

// --> save in a htm file
 AssignFile(htmlfile,
 ChangeFileExt(
 Application.ExeName,'.htm'));
 Rewrite(htmlfile);
 WriteLn(htmlfile, shtml);
 CloseFile(htmlfile);

// --> browse to the file
 WebBrowser1.Navigate(ChangeFileExt(
 Application.ExeName,'.htm'));

end;{Button1.OnClick}
Now start the project, write some valid query string in the Edit component, like
SELECT * FROM authors, click the Button1, and this is what you should get:

It is clear that you can easily configure this code to determine which fields to include
and which not, how to sort the database, which filters to apply (you can use WHERE
in your SQL statement), and set the HTML file look (Colors, Fonts, etc). Download
the projects code and start exporting your data to HTML.

The TCustomContentProducer components

Another way of converting database query results to html pages is to use some of
the descendants of the TCustomContentProducer component. The components
(PageProducer, DataSetTableProducer, QueryTableProducer, ...) are located on the
Internet page of the component palette - if your Delphi version includes them. We'll
be looking at some of those components in the next chapter.

Using ADO in Delphi 3 and 4 (before
AdoExpress)

With the advent of Delphi 5, Borland introduced ADO Express, the first time Delphi
has ever provided database access without the BDE. The reasons behind this where
simple, the BDE had had it's day. COM development was becoming the norm and its
the BDE was unfortunately incompatible.

Unfortunately the ADO Express components aren't without their flaws too. One of the
main (now fixed) bugs was the dreaded 'either BOF or EOF is true or the record has
been deleted' error, this on top of the fact that the components where uncomfortably
shoe-horned into BDE-style component interfaces.

Which leaves us with a quandry over what to do if we want to use Active Data
Objects (ADO) in our Delphi applications; after all there are many benefits - ADO is
faster, with native support for some of the more common Microsoft database
engines, and you don't have to live with the old BDE distribution problem as all
recent versions of Windows have support built right in.

Delphi does provide an answer however in it's amazing support for type-libraries and
all things COM, by allowing you to import the type-library and automatically creating
a wrapper.

MSADOxx.TLB - Ado Type Library

To import the ADO type library go to the File menu and select Open... From the Files
of type combo select Type Library, and browse to the ADO folder (usually found in
\PROGRAM FILES\COMMON FILES\SYSTEM\). The ADO type-libraries are named
MSADOxx.TLB, the number on the end will depend on the version of Windows you
have installed (ADO is also installed by Office and many other programs), the latest
version as of writing is 2.7 which you can download from Microsoft.

Once Delphi has finished processing the MSADOxx.TLB file, it will present you with
an editor showing all the types, interfaces, etc it has read from the type-library.
Pressing F12 at this point will display the Pascal wrapper unit ADODB_TLB.PAS (if the
file-path isn't the BORLAND\DELPHIx\IMPORTS\ folder you may wish to move this so
subsequent projects can find it).

You can at this point use the ADODB_TLB unit by adding it into your projects USES
clause, however there are some problems to be overcome.

Microsoft's VARIANT type

The first is how to handle Microsoft's VARIANT type. Delphi's equivalent is
OLEVARIANT, though most programmers will be used to the native STRING,
INTEGER and the like. Again this is something Delphi handles with ease with an array
of functions such as VarCast. Below is an example of a function that allows us to cast
variants into something easier to swallow:

function oleGetStr(value: oleVariant): string;
var
 index,
 lowVal,
 highVal : integer;
 oleArray: PSafeArray;
 oleObj : oleVariant;
begin
 result := '';

 try
 case VarType(value) of
 varEmpty,
 varNull: result := '';
 varSmallint,
 varInteger,
 varByte,
 varError: result := IntToStr(value);
 varSingle,
 varDouble,
 varCurrency: result := FloatToStr(value);
 varDate: result := DateTimeToStr(value);
 varOleStr,
 varStrArg,
 varString: result := value;
 varBoolean:
 if value then
 result := 'True'
 else result := 'False';
 varDispatch, // do not remove IDispatch!
 varVariant,
 varUnknown,
 varTypeMask:
 begin
 VarAsType(value, varOleStr);
 result := value;
 end;
 else
 if VarIsArray(value) then
 begin
 VarArrayLock(value);
 index := VarArrayDimCount(value);

 lowVal := VarArrayLowBound(value, index);
 highVal := VarArrayHighBound(value, index);
 oleArray := TVariantArg(value).pArray;

 for index := lowVal to highVal do
 begin
 SafeArrayGetElement(oleArray, index, oleObj);
 result := result + oleGetStr(oleObj) + #13#10;
 end;

 VarArrayUnlock(value);
 Delete(result, length(result) - 1, 2);
 end
 else
 result := ''; //varAny, varByRef
 end;
 except
 // do nothing, just capture
 end;
end;

Once you know how to import type-libraries & handle variant types Microsoft's MSDN
site will become your best friend. There is no way Borland could keep up with the
new type-libraries and technologies churned out by Microsoft, however by utilising
MSDN you can find out exactly what each method expects and returns and the
wrapper unit will allow you to see exactly how this converts into Object Pascal.

An example of this can be found in the function below:

function adoConnect(
 connectionStr: string;
 userName: string = '';
 password: string = ''
): oleVariant;
begin
 result := CreateOleObject('ADODB.Connection');

 if (VarType(result) = varDispatch) then
 if (userName <> '') then
 result.Open(connectionStr, userName, password)
 else
 result.Open(connectionStr);
end;

This function allows us to open up an ADO connection by passing in a connection
string (a collection of parameters parsed by ADO describing the database &
provider), and optionally the required username and password.

The example above uses what is termed late-binding, the disadvantage of this
approach being that Delphi cannot interpret what is being called until runtime,
however it does allow you better support as the automatic type-library conversion
process cannot convert every method available. The alternative, early-binding
utilises the classes & methods as defined in the Delphi wrapper unit and as such

allow you to use features such as code-completion, although is much more
restrictive. An example of early-binding is shown below:

function adoGetDisconnectedRecordset(
 adoCon: oleVariant;
 adoSQL: string
): oleVariant;
var
 data: RecordSet;
begin
 data := CoRecordset.Create;

 try
 data.CursorLocation := adUseClient;

 data.Open(
 adoSQL,
 adoCon.ConnectionString,
 adOpenKeyset,
 adLockBatchOptimistic,
 adCmdText
);

 data.Set_ActiveConnection(nil);

 result := data;
 finally
 data := nil;
 end;
end;

Now you know how to interpret type-libraries you can apply your knowledge to other
Microsoft and third-party technologies, such as XML and MTS.

Transactions in Delphi ADO database
development

The general idea behind a transaction is that several steps can be performed in
series, with the capability to undo all of the steps at once if needed. In addition, the
transaction should happen inside an isolated world where other transactions cannot
change data while your transaction is running.

For example, to transfer money between two bank accounts, you subtract an amount
from one account and add the same amount to the other. If either update fails, the
accounts no longer balance. Treating these changes as a single event ensures either
all or none of the changes apply.

In this chapter of the free Delphi ADO database course we'll see how to enable
transaction processing in Delphi ADO development.

BeginTrans, CommitTrans, RollBackTrans

Database transactions are a means to allow a user to do many operations on a
recordset or not to do any of them. There is no such thing in a transaction that one
task is done and other is not. Transactions are always executed as a *whole*. By
using transactions, you ensure that the database is not left in an inconsistent state
when a problem occurs completing one of the actions that make up the transaction.

In Delphi ADO's transaction processing, 3 methods are used with the
TADOConnection object to save or cancel changes made to the data source.

Once you call the BeginTrans method, the provider will no longer instantaneously
commit any changes you make until you call CommitTrans or RollbackTrans to end
the transaction.

Transaction Level

The IsolationLevel property is the level of transaction isolation for a TADOConnection
object. The purpose of the isolation level is to define how other transactions can
interact with your transactions, when they work with the same tables. For example,
can you see changes in other transactions before or after they are committed? This
property only goes into effect after you make a BeginTrans method call.

Transaction processing

To start a transaction call the BeginTrans method of the TADOConnection object.
BeginTrans returns the nesting level of the new transaction. A return value of "1"
indicates you have opened a top-level transaction (that is, the transaction is not
nested within another transaction), "2" indicates that you have opened a second-
level transaction (a transaction nested within a top-level transaction), and so forth.
Once the BeginTrans is executed, the OnBeginTransComplete event is triggered and
the InTransaction property to True.

Note: Since transactions can be nested, all lower-level transactions must be resolved
before you can resolve higher-level transactions.

Once you have started a transaction, a call to commit the transaction is usually
attempted in a try...except block. If the transaction cannot commit successfully, you
can use the except block to handle the error and retry the operation or to roll back
the transaction.

var Level: integer;
begin
 Level:=ADOConnection1.BeginTrans;
 try
 //do some database
 //updating, deleting or inserting

 ADOConnection1.CommitTrans;
 except
 on E:Exception do ADOConnection1.RollbackTrans;
 end;//try
end;

As you can see, using transactions in Delphi ADO is rather simple. When you call
CommitTrans, the current transaction ends and, if possible, all changes are saved.
However, if the database is unable to save any one of the changes, then none of
them are saved. In this latter case when a saving problem occurs, the CommitTrans
method throws an exception, we catch it in the except part and call the
RollbackTrans to cancel any changes made during the current transaction.

Even though it is possible, it is NOT advisable to start, commit or rollback a
transaction in different event handlers (button clicks, for example). Windows are
event driven, if a user starts a transaction within a button click procedure, you must
be sure he will try to commit it. Thus, the longer a transaction is active, the higher is
the probability that transaction will conflict with another when you attempt to
commit any changes.

Deploying Delphi ADO database
applications

Once you have created a Delphi ADO based solution, the final step is to successfully
deploy it to the user's computer. This is the topic will cover in this chapter of the free
Delphi ADO database course.

What is required by a given application varies, depending on the type of application.
Each project may contain several executable files, and a number of supporting files,
such as DLLs, and package files. In most cases you'll only have one executable to
install on a target computer - your application's executable file - Delphi produces
applications wrapped in compact exe files, so called standalone Windows application.

Applications that access databases involve special installation considerations beyond
copying the application’s executable file onto the target computer.

When deploying database applications that use ADO, you need to be sure that MDAC
version 2.1 or later is installed on the system where you plan to run the application.
MDAC is automatically installed with software such as Windows 98 / 2000 and
Internet Explorer version 5 or later. No other deployment steps are required.

ADO on Windows 95

If your client's computer has Windows 95 you may get a warning indicating that you
need DCOM95 to install MDAC, since there is no support for ADO in Windows 95.
Once you install DCOM95, you'll can proceed and install MDAC. Here's a tip how to
find the OS version.

MS Data Version Checker

One of the tools that might be handy is the Microsoft's Component Checker. The
Component Checker tool is designed to help you determine installed version
information and diagnose installation issues with the Microsoft Data Access
Components (MDAC).

The database file

The data files (in our case an MS Access database), must be made available to the
application. You make it available by simply copying (an "empty") the MDB file to the
client computer. The process must be done before the user first start the application.
Each time you send an updated exe file, if the structure of the database has not
changed, you do not need to redeploy the MDB file.

The connection string

Obviously, when creating database applications that are to be run on various
machines, the connection to the data source should not be hard-coded in the
executable. In other words, the database file may be located anywhere on the user's
computer - the connection string used in the TADOConnection object must be
created at run time. One of the suggested places to store the path to the database is
the Windows Registry. In general to create a connection string at run time you have
to a) place the Full Path to the database in Registry; and b) each time you start your
application, read the Registry, "create" the ConnectionString and Open the
ADOConnection. Here's a sample code:

Type
 TWin32Version = (wvUnknown,
 wvWin95,
 wvWin98,
 wvWinNT,
 wvWin2000);

function GetWinVersion: TWin32Version;
begin
 Result := wvUnknown;
 if Win32Platform = VER_PLATFORM_WIN32_WINDOWS then
 if (Win32MajorVersion > 4) or
 ((Win32MajorVersion = 4) and
 (Win32MinorVersion > 0)) then
 Result := wvWin98
 else
 Result := wvWin95
 else
 if Win32MajorVersion <= 4 then
 Result := wvWinNT
 else
 if Win32MajorVersion = 5 then
 Result := wvWin2000
end;

Is that all? This seams to easy

Yes, when described by words it seems very easy, just copy the exe file, the mdb file
and be sure the client computer has MDAC. Of course, the first time you try to
deploy your state-of-the-art database solution you'll bump into a wall. How to copy a
file on another computer to a folder like '\Program Files\YOUR COMPANY\PROJECT
NAME\ApplicationName.exe'? There is an answer that might solve most of the
problems, the installation tools. The Install Sheild Express that comes with some
Delphi versions can be used to create an installation application. This tool gives your
users the ability to select where to install your application, let's the user decide what
parts of the application would be installed (exe, help, mdb, ...) and makes the
process of creating a Project group in the Start menu easy. Creating insulation
applications with IE Express is not hard nor is it trivial. I'll leave this for some future
article.

TOP ADO programming TIPS

This chapter of free Delphi/ADO DB course offers specific recommendations to help
improve and speed up the development of your database applications made with
Delphi and ADO.

Our intention is to update this chapter dynamically with new tips, and code
suggestions. If you have a tip (or a question) on (Delphi) ADO programming feel free
to add it to this page. Note that some of the questions you might ask are most likely
already answered through the chapters of this Course.

Access, ADOExpress, dbGo

My clients do not have Access on their machines, will my Delphi /
ADO application work?

In general: what ever database you create (Paradox or Access) the users of your
software do not need to have MS Access or Paradox on their machines. When using
Access with ADO, MS provides MDAC (components to access an Access database).

I have Delphi 5 Professional, where is ADOExpress?

Either you'll need to buy at least Delphi 6 Professional, or try with some third party
ADO VCL components

Connecting to data stores

How do I connect to a MS Access 2000 database?

ADOConnection.ConnectionString :=
'Provider=Microsoft.Jet.OLEDB.4.0;DataSource=C:\MyDatabase.mdb;Persist Security
Info=False';

How do I connect to a password protected MS Access 2000
database?

ADOConnection.ConnectionString := 'Provider=Microsoft.Jet.OLEDB.4.0;Jet
OLEDB:Database Password=XXXXXX;DataSource=C:\MyDatabase.mdb;Persist
Security Info=False';

What provider should I use for MS Access

For MS Access 97 use Microsoft.Jet.OLEDB.3.51
For MS Access 2000 use Microsoft.Jet.OLEDB.4.0

How do I connect to a dBase database?

ADOConnection.ConnectionString :=
'Provider=Microsoft.Jet.OLEDB.4.0;DataSource=C:\MyDatabase.mdb;Extended
Properties="dBase 5.0;"';

How do I connect to a Paradox database?

ADOConnection.ConnectionString :=
'Provider=Microsoft.Jet.OLEDB.4.0;DataSource=C:\MyDatabase.mdb;Extended
Properties="Paradox 7.X;"';

How do I connect to a MS Access database on a CD (read only) drive?

ADOConnection.Mode := cmShareExclusive;

Data retrieving and manipulation

How do I use multiword table / field names (spaces in Table or Field
name)?

Enclose multiword names in [] brackets:
ADOQuery1.SQL.Text := 'SELECT [Last Name], [First Name] FROM [Address Book]';

How do I use constant fields in an SQL query?

ADOQuery1.SQL.Text := 'SELECT ''2002'', [First Name], Salary FROM Employess';

How do I delete all records in a table?

ADOQuery1.SQL.Text := 'DELETE * FROM TableName';

Why do I keep getting a "-1" for the RecordCount property

If you need the RecordCount to be correct, set the CursorType to something other
than ctOpenForwardOnly.

I'm using AutoNumber for Primary Key field to make every record unique. If
I want to read or Edit some ADOTable record after one was appended (and
Post-ed) I get en error: "The specified row could not be located for
updating. Some values may have been changed since it was last read".
Why?

After every new record you should use:

var bok: TBookmarkStr;
begin
 bok:=adotable1.Bookmark;
 adotable1.Requery();
 adotable1.Bookmark:=bok;
end;

How do I create a disconnected ADO recordset? I want to run a query,
pick the data and delete some records but not physically.

In order to create a disconnected ADO recordset, you must first set the ADODataSets
CursorLocation property to "clUseClient". Then open the Recordset. Then set the
ADODatasets Connection to Nil. Do not close the ADODataset.

How do I retrieve a system information, for example, list of tables,
fields (columns), indexes from the database?

TADOConnection object has an OpenSchema method that retrieves system
information like list of tables, list of columns, list of data types and so on. The
following example shows how to fill an ADODataSet (DS) with a list of all indexes on
a table (TableName): var DS:TADODataSet;

...
ADOConnection.OpenSchema(siIndexes, VarArrayOf([Unassigned, Unassigned,
Unassigned, Unassigned, TableName]), EmptyParam, DS);

How can I improve the performance of my Ado application (like speed
up query data retrieval)?

• Avoid returning too many fields. ADO performance suffers as a larger number
of fields are returned. For example using "SELECT * FROM TableName" when
TableName has 40 fields, and you really need only 2 or 3 fields

• Choose your cursor location, cursor type, and lock type with care. There is no
single cursor type you should always use. Your choice of cursor type would
depend on the functionality you want like updatability, cursor membership,
visibility and scrollability. Opening a keyset cursor may take time for building
the key information if you have a lot of rows in the table whereas opening a
dynamic cursor is much faster.

• Release your dynamically created ADO objects ASAP.
• Check your SQL expression: when joining tables with Where t1.f1 = t2.f1 and

t2.f2 = t2.f2 it is important that f1 and f2 as fields are set to be indexed.

